A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A combinatorial siRNA and mRNA approach for obesity treatment using targeting lipid nanoparticles. | LitMetric

A combinatorial siRNA and mRNA approach for obesity treatment using targeting lipid nanoparticles.

J Control Release

Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA. Electronic address:

Published: July 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Obesity, a widespread global health issue affecting millions, is characterized by excess fat deposition and metabolic dysfunction, significantly elevating the risk of comorbidities like type 2 diabetes, cardiovascular disease, and certain cancers, all of which contribute to rising rates of preventable morbidity and mortality. Current approaches to obesity, including lifestyle modifications, and pharmacotherapy, often face limitations such as poor long-term adherence, side effects, and insufficient targeting of the complex, multifactorial pathways underlying the disease. Herein we report a dual, RNA-mediated combinatorial approach using targeting lipid nanoparticles (LNP) for the treatment of obesity. LNPs were co-encapsulated with mRNA encoding Interleukin-27 (mIL-27) to coactivate PGC-1α, PPARα, and UCP-1, thereby promoting adipocyte differentiation and enhancing adaptive thermogenesis within adipocytes, and siRNA targeting Dipeptidyl peptidase-4 (siDPP-4) to silence the primary inhibitory enzyme of GLP-1, and GIP within the incretin system, effectively restoring glucose homeostasis. Following post translational silencing of DPP-4 and upregulation of IL-27 in a diet-induced obesity (DIO) mice model, increased expression of thermogenic biomarkers PGC-1α, PPARα, and UCP-1 was observed at the molecular, protein, and tissue level, and insulin sensitivity was restored. Importantly, this gene modulation led to a 21.1 % reduction of bodyweight after treatment in the DIO model. These findings demonstrate for the first time a dual RNA-mediated combinatorial approach, leveraging liver targeting LNP delivery with synergistic effects from incretin system regulation and induction of adipocyte differentiation and thermogenesis after codelivery of siDPP-4 and mIL-27. This innovative strategy provides a promising alternate framework for addressing obesity and its associated metabolic dysfunction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2025.113857DOI Listing

Publication Analysis

Top Keywords

targeting lipid
8
lipid nanoparticles
8
metabolic dysfunction
8
dual rna-mediated
8
rna-mediated combinatorial
8
combinatorial approach
8
pgc-1α pparα
8
pparα ucp-1
8
adipocyte differentiation
8
incretin system
8

Similar Publications