Machine learning for improved density functional theory thermodynamics.

Sci Rep

Department of Physics and Astronomy, Uppsala University, Box 516, 751 20, Uppsala, Sweden.

Published: May 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The predictive accuracy of density functional theory (DFT) for alloy formation enthalpies is often limited by intrinsic energy resolution errors, particularly in ternary phase stability calculations. In this work, we present a machine learning (ML) approach to systematically correct these errors, improving the reliability of first-principles predictions. A neural network model has been trained to predict the discrepancy between DFT-calculated and experimentally measured enthalpies for binary and ternary alloys and compounds. The model utilizes a structured feature set comprising elemental concentrations, atomic numbers, and interaction terms to capture key chemical and structural effects. By applying supervised learning and rigorous data curation we ensure a robust and physically meaningful correction. The model is implemented as a multi-layer perceptron (MLP) regressor with three hidden layers, optimized through leave-one-out cross-validation (LOOCV) and k-fold cross-validation to prevent overfitting. We illustrate the effectiveness of this method by applying it to the Al-Ni-Pd and Al-Ni-Ti systems, which are of interest for high-temperature applications in aerospace and protective coatings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12085584PMC
http://dx.doi.org/10.1038/s41598-025-02088-7DOI Listing

Publication Analysis

Top Keywords

machine learning
8
density functional
8
functional theory
8
learning improved
4
improved density
4
theory thermodynamics
4
thermodynamics predictive
4
predictive accuracy
4
accuracy density
4
theory dft
4

Similar Publications

Traditional drug discovery methods like high-throughput screening and molecular docking are slow and costly. This study introduces a machine learning framework to predict bioactivity (pIC₅₀) and identify key molecular properties and structural features for targeting Trypanothione reductase (TR), Protein kinase C theta (PKC-θ), and Cannabinoid receptor 1 (CB1) using data from the ChEMBL database. Molecular fingerprints, generated via PaDEL-Descriptor and RDKit, encoded structural features as binary vectors.

View Article and Find Full Text PDF

Oral bioavailability property prediction based on task similarity transfer learning.

Mol Divers

September 2025

Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, 211198, China.

Drug absorption significantly influences pharmacokinetics. Accurately predicting human oral bioavailability (HOB) is essential for optimizing drug candidates and improving clinical success rates. The traditional method based on experiment is a common way to obtain HOB, but the experimental method is time-consuming and costly.

View Article and Find Full Text PDF

This study explores how differences in colors presented separately to each eye (binocular color differences) can be identified through EEG signals, a method of recording electrical activity from the brain. Four distinct levels of green-red color differences, defined in the CIELAB color space with constant luminance and chroma, are investigated in this study. Analysis of Event-Related Potentials (ERPs) revealed a significant decrease in the amplitude of the P300 component as binocular color differences increased, suggesting a measurable brain response to these differences.

View Article and Find Full Text PDF

Background And Objectives: Older adults living with dementia are a heterogeneous group, which can make studying optimal medication management challenging. Unsupervised machine learning is a group of computing methods that rely on unlabeled data-that is, where the algorithm itself is discovering patterns without the need for researchers to label the data with a known outcome. These methods may help us to better understand complex prescribing patterns in this population.

View Article and Find Full Text PDF