Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: While anthracyclines, commonly used in cancer treatment, are well known to cause cardiotoxicity, no validated biomarkers currently exist that can predict the early development of doxorubicin-induced cardiotoxicity (DIC). Therefore, identifying early biomarkers of DIC is urgently needed. Metabolomics approaches have been used to elucidate this relationship and identified related metabolite markers. However, differences in pre-clinical model systems make it challenging to draw definitive conclusions from the discoveries and translate findings into clinical applications.

Aim Of Review: A systematic literature search on metabolomics studies of DIC was conducted with the goal to identify and compare study results reported using in vitro models, animal models, and studies from clinical patients. Metabolites identified across all studies were pooled to uncover biologically meaningful patterns that are significantly enriched in the data. Finally, pooled metabolites perturbed by DIC were mapped to metabolic pathways to explore potential pathological implications.

Results: We reviewed 28 studies published between 2000 and 2024 that utilized metabolomics approaches to investigate DIC. The included studies used a variety of analytical techniques, including LC-MS, GC-MS, and NMR. The analysis revealed that metabolites such as inosine, phenylalanine, arginine, and tryptophan were commonly perturbed across all study models, with carnitine metabolism and purine and pyrimidine metabolism being the most affected pathways. Metabolite Set Enrichment Analysis (MSEA) using MetaboAnalyst identified the arginine biosynthesis, citrate cycle, and alanine, aspartate, and glutamate metabolism pathways as significantly enriched.

Conclusion: These findings underscore the potential of metabolomics in identifying early biomarkers for DIC, providing a foundation for future studies aimed at preventing cardiotoxicity and improving treatment strategies for cancer patients receiving DOX-containing therapies.

Key Scientific Concepts Of Review: Altogether, metabolomics studies suggest metabolic alterations in DIC, albeit little overlap between studies especially with animal and human studies. Attempts at intercepting these pathways have shown that intervention in DIC may be possible. Future research should focus on developing precise cardiotoxicity models that incorporate cancer metabolism, as these will be crucial in bridging the gap between laboratories (in vitro and animal models) and clinical studies to identify subclinical biomarkers in the early stage of DIC that can effectively identify new targets for interventions to reduce lethal cardiovascular disease risk.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12085340PMC
http://dx.doi.org/10.1007/s11306-025-02258-8DOI Listing

Publication Analysis

Top Keywords

metabolomics approaches
12
studies
10
dic
9
doxorubicin-induced cardiotoxicity
8
identifying early
8
early biomarkers
8
biomarkers dic
8
metabolomics studies
8
animal models
8
metabolism pathways
8

Similar Publications

Biomarkers based on volatile organic compounds (VOCs) measured in human breath have been investigated in a wide range of diseases. However, the excitement surrounding such biomarkers has not yet translated to the discovery of any that are ready for clinical implementation. A lack of standardisation in sampling and analysis has been identified as a key obstacle to the validation of potential biomarkers in in multi-centre studies.

View Article and Find Full Text PDF

Exploring the Frontiers of Computational NMR: Methods, Applications, and Challenges.

Chem Rev

September 2025

Center for Computational Life Sciences, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio 44195, United States.

Computational methods have revolutionized NMR spectroscopy, driving significant advancements in structural biology and related fields. This review focuses on recent developments in quantum chemical and machine learning approaches for computational NMR, emphasizing their role in enhancing accuracy, efficiency, and scalability. QM methods provide precise predictions of NMR parameters, enabling detailed structural characterization of diverse systems.

View Article and Find Full Text PDF

Phage therapy modulates the gut microbiome and immune responses in non-typhoidal Salmonella-induced colitis.

Food Res Int

November 2025

Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), 1068 Xueyuan Avenue, Shenzhen 518055, China. Electronic address:

Inflammatory bowel disease (IBD) encompasses two main conditions: Crohn's disease and ulcerative colitis. The role of foodborne pathogens, often transmitted through contaminated food, is a subject of ongoing research regarding their potential involvement in IBD. The most common foodborne pathogens S.

View Article and Find Full Text PDF

Metabolism is a fundamental process that shapes the pharmacological and toxicological profiles of drugs, making metabolite identification and analysis critical in drug development and biological research. Global Natural Products Social Networking (GNPS) is a community-driven infrastructure for mass spectrometry data analysis, storage and knowledge dissemination. GNPS2 is an improved version of the platform offering higher processing speeds, improved data analysis tools and a more intuitive user interface.

View Article and Find Full Text PDF

Non-target metabolomic approach of the toxic effects of glyphosate in zebrafish (D. rerio).

Environ Res

September 2025

Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull (IQS-URL), Via Augusta 390, Barcelona, 08017, Spain. Electronic address:

Glyphosate (GLY) is the most widely used herbicide globally and is frequently detected in aquatic environments at low concentrations, raising concerns about its potential long-term effects on non-target organisms. However, the systemic metabolic disruptions of chronic GLY exposure in aquatic vertebrates remain poorly understood, especially at environmentally relevant concentrations. This study investigates the metabolic disruptions of GLY exposure in zebrafish (D.

View Article and Find Full Text PDF