98%
921
2 minutes
20
Background: This study aims to elucidate the effect and mechanism of phospholipid transfer protein (PLTP) on vascular dysfunction in DR and explore the molecular mechanism of abnormal PLTP expression based on DNA methylation.
Methods: Human retinal microvascular endothelial cells (HRMECs) cultured in high glucose (HG) and streptozotocin-treated mice were used as DR models to detect and screen the key genes with abnormal promoter DNA methylation. Single-cell sequencing, tube formation and migration assays were employed to verify the relationship between PLTP and vascular function. Additionally, siRNA and luciferase reporter assay were used to study the key enzymes regulating the DNA methylation of PLTP. Transcriptome sequencing, coimmunoprecipitation and GSK3β inhibitor were utilized to identify and validate the key downstream pathways of PLTP.
Results: DR models exhibited DNA hypermethylation and decreased expression of PLTP. Abnormal PLTP expression was implicated in vascular dysfunction, and PLTP overexpression reversed HG-induced effects on the migration and tube formation of endothelial cells. The siDNMT3B and luciferase reporter assay indicated that DNMT3B is the primary enzyme affecting abnormal methylation. Interestingly, PLTP promoted the phosphorylation of AKT and GSK3β, indicating that PLTP modulates angiogenesis via the AKT/GSK3β signaling pathway.
Conclusions: PLTP regulates the proliferation, migration and tube formation of HRMECs, and is involved in maintaining vascular function via the AKT/GSK3β signaling pathway. In HG environment, increased DNMT3B expression upregulates DNA methylation of the PLTP promoter, downregulating PLTP expression and leading to vascular dysfunction in DR.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12085079 | PMC |
http://dx.doi.org/10.1186/s13148-025-01874-4 | DOI Listing |
Haematologica
September 2025
Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences, Okayama.
Idiopathic multicentric Castleman disease (iMCD) is a rare lymphoproliferative disorder characterized by systemic inflammation and lymphadenopathy. Two major clinical subtypes, idiopathic plasmacytic lymphadenopathy (iMCD-IPL) and iMCD with thrombocytopenia, anasarca, fever, renal dysfunction/reticulin fibrosis, and organomegaly (iMCD-TAFRO), exhibit distinct pathophysiologic mechanisms. While interleukin-6 (IL-6) is known to be elevated in iMCD, the differences in IL-6 production sources between subtypes remain unclear.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
September 2025
Vascular Biology Program, Boston Children's Hospital and Harvard Medical School, MA (K. Cui, B.Z., B.W., S.E.-B., A.V., H.C.).
Background: Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of lipid-laden foam cells and plaques within the arterial wall. Dysfunctional vascular smooth muscle cells (VSMCs), fibroblasts, endothelial cells, and macrophages contribute to disease progression. Here, we report that macrophage-specific expression of epsins, highly conserved endocytic adaptor proteins involved in clathrin-mediated endocytosis, accelerates atherosclerosis in Western diet-fed mice.
View Article and Find Full Text PDFCardiol Young
September 2025
Congenital Valve Procedural Planning Program, Division of Pediatric Cardiac Surgery, Cleveland Clinic Children's, and Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA.
Background: Congenital aortic valvar disease represents a heterogeneous population with suboptimal surgical repair or replacement outcomes. We assess our approach and short-term outcomes in this population using cardiac CT evaluation for personalised surgical planning and execution.
Methods: We assessed patients who underwent aortic valvar surgery from February 2022 to August 2024.
Brain Behav
September 2025
School of Physical Education and Health, Henan University of Chinese Medicine, Zhengzhou, China.
Background: Clinical and basic research suggests that exercise is a safe behavioral intervention and effective in improving cognition in vascular dementia (VD). However, despite global efforts, there is still no effective method to completely cure VD. This study aimed to investigate the effects of long-term exercise pretreatment on typical VD pathology in a rat model, and further compare the neuroprotective impacts of different exercise modalities on VD rats.
View Article and Find Full Text PDFWounds
August 2025
Faculty of Physical Therapy, Cairo University, Cairo, Giza, Egypt.
Background: Charcot foot is a debilitating complication of peripheral neuropathy and is primarily associated with diabetes, leading to structural damage, ulceration, and osteomyelitis. Pulsed electromagnetic field (PEMF) therapy is a promising treatment modality for wound healing and bone metabolism.
Objective: To evaluate the efficacy of PEMF therapy in promoting bone growth and ulcer healing in patients with Charcot foot ulcers.