98%
921
2 minutes
20
Systemic lupus erythematosus (SLE) and ulcerative colitis (UC) are both chronic autoimmune diseases with unclear shared mechanisms, largely due to limited mechanistic studies and clinical research cohorts. Transcriptome datasets from the Gene Expression Omnibus (GEO) database were analyzed for SLE and UC, identifying differentially expressed genes (DEGs). Weighted gene co-expression network analysis (WGCNA) identified significant module genes, including PLEKHA1. The diagnostic potential of PLEKHA1 was confirmed using machine-learning algorithms and real-time fluorescence quantitative PCR (RT-PCR) in clinical samples. Additionally, the study explored the link between PLEKHA1 and neutrophil extracellular trap (NET) formation. Our analyses identified transcriptional signatures associated with neutrophil degranulation and NET formation pathways in the peripheral blood of both SLE and UC, a perspective not previously explored. PLEKHA1 was identified as a promising biomarker that may impact NET formation. Pathway enrichment analyses indicated that PLEKHA1 plays a regulatory role in NET formation in both diseases. This study provides novel transcriptional evidence by proposing neutrophil degranulation and NET formation as common pathways in SLE and UC, with PLEKHA1 acting as a shared diagnostic gene. PLEKHA1 may regulate neutrophil activation and immune response, influencing NET formation and neutrophil degranulation in SLE patients' peripheral blood.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11010-025-05300-4 | DOI Listing |
Nat Aging
September 2025
Aging Biomarker Consortium (ABC), Beijing, China.
The global surge in the population of people 60 years and older, including that in China, challenges healthcare systems with rising age-related diseases. To address this demographic change, the Aging Biomarker Consortium (ABC) has launched the X-Age Project to develop a comprehensive aging evaluation system tailored to the Chinese population. Our goal is to identify robust biomarkers and construct composite aging clocks that capture biological age, defined as an individual's physiological and molecular state, across diverse Chinese cohorts.
View Article and Find Full Text PDFToxicol Sci
September 2025
Department of Pharmacology, Rutgers University Robert Wood Johnson Medical School, Piscataway, NJ, USA.
Neutrophils play a complex role in the pathogenesis of chronic liver disease and have been linked to both liver damage and injury resolution. Recent reports propose that neutrophils drive liver injury and fibrosis through the formation of neutrophil extracellular traps (NETs). This study tests the hypothesis that the enzyme peptidyl arginine deiminase-4 (PAD4) drives NET formation and liver fibrosis in experimental chronic liver injury.
View Article and Find Full Text PDFInorg Chem
September 2025
Boston University, Chemistry Department, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States.
Previously published (NMe)[V(O)(μ-O)(pin)], has been shown to aerobically catalyze the oxidation of benzylic and allylic alcohols under mild conditions. Herein, we report syntheses of [V(O)(μ-O)(pin)] trimers, which are also active in OAD catalysis. Trimer formation requires an ammonium cation with at least two hydrogen atoms per cation (e.
View Article and Find Full Text PDFImmunology
September 2025
Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan, ROC.
Enolase-1 (ENO1) is a moonlighting protein with multiple functions. When expressed on the cell surface, ENO1 binds plasminogen (PLG) and promotes cell migration by facilitating plasmin (PLM)-mediated extracellular matrix degradation. Here, we observed that inflammatory stimulation significantly upregulated ENO1 expression on the neutrophil surface, both in vitro and in vivo.
View Article and Find Full Text PDFEur J Neurosci
September 2025
Department of Neuroanatomy, Yokohama City University School of Medicine, Yokohama, Japan.
Pelvic visceromotor functions such as micturition are regulated by coordinated autonomic and somatic motor pathways from the central nervous system. The parasympathetic system induces detrusor muscle contraction while the somatic system facilitates relaxation of the external urethral sphincter, ensuring synchronized and efficient bladder emptying during the voiding process. This study explores the relationship between Barrington's nucleus corticotropin-releasing hormone (CRH)-ergic projections and the formation of perineural nets (PNNs) among spinal motoneurons, particularly parasympathetic preganglionic neurons in the intermediolateral nucleus (IML) and Onuf's nucleus during the maturation of the neural circuitry controlling pelvic visceromotor functions.
View Article and Find Full Text PDF