Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Rationale And Objectives: To develop an explainable fusion model that combines clinical, radiomic, and habitat features to predict postoperative early recurrence in hepatocellular carcinoma (HCC).

Methods: The bicentric retrospective study included 370 patients with surgically confirmed early-stage HCC who underwent gadoxetic acid-enhanced MRI. The patients were stratified into a training cohort (n=296) and an external validation cohort (n=74). From the hepatobiliary phase images, habitat and radiomics features were extracted across the entire tumor and used to construct radiomics and habitat models. Additionally, a clinical model was established utilizing relevant clinical features. Subsequently, all previously mentioned features were merged to construct the fusion model (HabRad_FB). Diagnostic performance of these models was assessed and compared using the area under the receiver operating characteristic curve (AUC), net reclassification index (NRI), and integrated discrimination improvement (IDI). The fusion model was then interpreted using SHapley Additive exPlanations (SHAP) analysis.

Results: Tumor recurrence was observed in 73 out of 370 patients (19.7%; 55.2±11.3 years; male=333). Among all study cohorts, the HabRad_FB model showed the highest AUC (0.820-0.959), outperforming the clinical (0.517-0.729), radiomics (0.707-0.815), and habitat (0.729-0.861) models. The HabRad_FB model also demonstrated significant improvement in IDI in the training cohort and NRI in the validation cohort. SHAP force plots provided valuable insights into the interpretation of HabRad_FB model's predictions for early recurrence.

Conclusion: The HabRad_FB, an explainable fusion model, aids clinicians in accurately and non-invasively predicting the early recurrence of HCC preoperatively. This model might provide great potential in prognostic prediction and clinical management.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.acra.2025.04.018DOI Listing

Publication Analysis

Top Keywords

fusion model
20
explainable fusion
12
early recurrence
12
model
9
postoperative early
8
recurrence hepatocellular
8
hepatocellular carcinoma
8
gadoxetic acid-enhanced
8
acid-enhanced mri
8
370 patients
8

Similar Publications

Viscosity-sensitive fluorescent probes based on the hemicyanine for the organelle-specific visualization during autophagy and ferroptosis.

Spectrochim Acta A Mol Biomol Spectrosc

September 2025

College of Chemistry, Chemical Engineering and Material Science, Soochow University, No. 199 Ren'Ai Road, Suzhou 215123, China; Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China. Electronic address: g

The dynamic monitoring of cell death processes remains a significant challenge due to the scarcity of highly sensitive molecular tools. In this study, two hemicyanine-based probes (5a-5b) with D-π-A structures were developed for organelle-specific viscosity monitoring. Both probes exhibited correlation with the Förster-Hoffmann viscosity-dependent relationship (R > 0.

View Article and Find Full Text PDF

Drug-target interaction (DTI) prediction is essential for the development of novel drugs and the repurposing of existing ones. However, when the features of drug and target are applied to biological networks, there is a lack of capturing the relational features of drug-target interactions. And the corresponding multimodal models mainly depend on shallow fusion strategies, which results in suboptimal performance when trying to capture complex interaction relationships.

View Article and Find Full Text PDF

Tropomyosin is an actin-binding protein (ABP) which protects actin filaments from cofilin-mediated disassembly. Distinct tropomyosin isoforms have long been hypothesized to differentially sort to subcellular actin networks and impart distinct functionalities. Nevertheless, a mechanistic understanding of the interplay between Tpm isoforms and their functional contributions to actin dynamics has been lacking.

View Article and Find Full Text PDF

To combine the strengths of Gaussian and non-Gaussian latent variable models, a novel information fusion strategy has recently been proposed under the deep learning framework. Although promising results have been obtained, the critical structure learning problem remains unsolved, which seriously hinders the automation of data-driven modeling and analytics. In this article, the maximal information coefficient (MIC) method is introduced as a measurement of the AS between two latent variables, which has no restriction in the type of data distribution.

View Article and Find Full Text PDF

Force prediction is crucial for functional rehabilitation of the upper limb. Surface electromyography (sEMG) signals play a pivotal role in muscle force studies, but its non-stationarity challenges the reliability of sEMG-driven models. This problem may be alleviated by fusion with electrical impedance myography (EIM), an active sensing technique incorporating tissue morphology information.

View Article and Find Full Text PDF