Equol neutralizes toxin B to combat Clostridioides difficile infection without disrupting the gut microbiota.

Microbiol Res

State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China. Electronic address:

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Clostridioides difficile (C. difficile) toxin B (TcdB) is essential for C. difficile pathogenicity. TcdB induces apoptosis in host cells by internalizing and utilizing its glycosyltransferase activity to modify members of the small GTPase protein family through glycosylation. The intestinal environment is critical for the colonization of C. difficile, and the use of broad-spectrum antibiotics disrupts the balance of the gut microbiota, leading to increased susceptibility of the host to C. difficile. At present, the mainstream clinical approach for treating C. difficile infection (CDI) involves antibiotic therapies such as vancomycin, which disrupt the gut microbiota and are associated with a considerable risk of infection recurrence. Therefore, there is an urgent clinical need to develop new strategies to combat CDI. Here, we have identified a natural compound, equol, which inhibits the TcdB-mediated glycosylation of Rac1 through direct interaction, thereby reducing TcdB-induced cell death. Equol functions as an inhibitor of indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO), effectively suppressing the conversion of tryptophan to kynurenine in the intestinal tract while preserving the integrity of the gut microbiota. Concurrently, equol exhibits robust antioxidant properties, which markedly reduced TcdB-mediated oxidative damage and subsequent cell death. These findings suggest that equol holds therapeutic potential for the treatment of CDI.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micres.2025.128219DOI Listing

Publication Analysis

Top Keywords

gut microbiota
16
clostridioides difficile
8
difficile infection
8
cell death
8
difficile
7
equol
5
equol neutralizes
4
neutralizes toxin
4
toxin combat
4
combat clostridioides
4

Similar Publications

Preparation and Characterization of Polysaccharides From Grifola frondosa and Their Human Intestinal Flora-modulating Effect.

Chem Biodivers

September 2025

Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China.

A novel and efficient hydrogen peroxide/ascorbic acid-assisted extraction method for the preparation of Grifola frondosa polysaccharide (GFP) was developed, and two GFP fractions (GFP-H and GFP-L) with different molecular weights (Mws) were obtained by separation with ultrafiltration. Both high Mw component (GFP-H, Mw 396.4 kDa) and low Mw component (GFP-L, Mw 12.

View Article and Find Full Text PDF

Vδ1 γδ T cells are key players in innate and adaptive immunity, particularly at mucosal interfaces such as the gut. An increase in circulating Vδ1 cells has long been observed in people with HIV-1, but remains poorly understood. We performed a comprehensive characterization of Vδ1 T cells in blood and duodenal intra-epithelial lymphocytes, obtained from endoscopic mucosal biopsies of 15 people with HIV-1 on antiretroviral therapy and 15 HIV-seronegative controls, in a substudy of the ANRS EP61 GALT study (NCT02906137).

View Article and Find Full Text PDF

Background: The gut microbiota produces numerous metabolites that can enter the circulation and exert effects outside the gut. Several studies have reported altered gut microbiota composition and circulating metabolites in patients with chronic heart failure (HF) compared to healthy controls. Limited data is available on the interplay between dysbiotic features of the gut microbiota and altered circulating metabolites in HF patients.

View Article and Find Full Text PDF

This study aimed to assess the impact of yeast beta-1,3/1,6-glucans (BG) on apparent digestibility coefficients (ADC) of nutrients, intestinal fermentative metabolites, fecal microbiota profile, and immune and antioxidant variables in puppies before and after surgical challenge. Two treatments were evaluated: control, without, and test, with oral supplementation of 65 mg/kg body weight/day of purified BG from Saccharomyces cerevisiae for 120 days. For this, 16 growing Beagle dogs were distributed in a completely randomized design (n = 8/treatment).

View Article and Find Full Text PDF

Targeting the gut-liver axis with dietary polyphenols to ameliorate metabolic dysfunction-associated steatotic liver disease: advances in molecular mechanisms.

Crit Rev Food Sci Nutr

September 2025

Hunan Key Laboratory of Deep Processing and Quality Control of Cereals and Oils, State Key Laboratory of Utilization of Woody Oil Resource, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China.

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a condition that results from metabolic disorders. In addition to genetic factors, irregular and high-energy diets may also significantly contribute to its pathogenesis. Dietary habits can profoundly alter the composition of gut microbiota and metabolites.

View Article and Find Full Text PDF