Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The impact of SARS-CoV-2 in the lung has been extensively studied, yet the molecular regulators of host-cell programs hijacked by the virus in distinct human airway epithelial cell populations remain poorly understood. Some of the reasons include overreliance on transcriptomic profiling and use of nonprimary cell systems. Here we report a network-based analysis of single-cell transcriptomic profiles able to identify master regulator (MR) proteins controlling SARS-CoV-2-mediated reprogramming in pathophysiologically relevant human ciliated, secretory, and basal cells. This underscored chromatin remodeling, endosomal sorting, ubiquitin pathways, as well as proviral factors identified by CRISPR assays as components of the viral-host response in these cells. Large-scale drug perturbation screens revealed 11 candidate drugs able to invert the entire MR signature activated by SARS-CoV-2. Leveraging MR analysis and perturbational profiles of human primary cells represents an innovative approach to investigate pathogen-host interactions in multiple airway conditions for drug prioritization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12083520PMC
http://dx.doi.org/10.1126/sciadv.adu2079DOI Listing

Publication Analysis

Top Keywords

identification targeting
4
targeting regulators
4
regulators sars-cov-2-host
4
sars-cov-2-host interactions
4
interactions airway
4
airway epithelium
4
epithelium impact
4
impact sars-cov-2
4
sars-cov-2 lung
4
lung extensively
4

Similar Publications

Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by ubiquitous deficiency in the SMN protein. The identification of disease modifiers is key to understanding pathogenic mechanisms and broadening the range of targets for developing SMA therapies that complement SMN upregulation. Here, we report a cell-based screen that identified inhibitors of p38 mitogen-activated protein kinase (p38 MAPK) as suppressors of proliferation defects induced by SMN deficiency in mouse fibroblasts.

View Article and Find Full Text PDF

Clinical heterogeneity and prognostic markers in head and neck Kimura disease: A retrospective study.

Eur Arch Otorhinolaryngol

September 2025

Department of Otorhinolaryngology, Head and Neck Surgery, Beijing Tong Ren Hospital, Capital Medical University, No.1 Dongjiaominxiang Street, Beijing, 100730, China.

Objective: Kimura disease (KD) is a rare, chronic inflammatory disorder that is typically located in the head and neck region. It is characterized by subcutaneous nodules, eosinophilia, and elevated IgE levels. Its unclear etiology and similarities to malignancies create diagnostic and therapeutic challenges.

View Article and Find Full Text PDF

RNA-protein interactions critically regulate gene expression and cellular processes, yet their comprehensive mapping remains challenging due to their structural diversity. We introduce PRIM-seq (protein-RNA interaction mapping by sequencing), a method for concurrent de novo identification of RNA-binding proteins and their associated RNAs. PRIM-seq generates unique chimeric DNA sequences by proximity ligation of RNAs with protein-linked DNA barcodes, which are subsequently decoded through sequencing.

View Article and Find Full Text PDF

Antimicrobial resistance is currently one of the most serious and alarming threats to human health; therefore, the identification of novel antimicrobial agents is a compelling need. Recently, we identified the heterocyclic steroid PYED-1 as a novel promising antibacterial and antibiofilm agent. In an effort to broaden the repertoire of active compounds and elucidate the structural features responsible for their antibacterial activity, two novel derivatives of PYED-1 have been conceived herein.

View Article and Find Full Text PDF

Pan-carcinoma sialyl-Tn-targeting expands CAR therapy to solid tumors.

Cell Rep Med

September 2025

Translational Research Unit, Department of Cellular Therapy, Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway. Electronic address:

Accurate identification of tumor-specific markers is vital for developing chimeric antigen receptor (CAR)-based therapies. While cell surface antigens are seldom cancer-restricted, their post-translational modifications (PTMs), particularly aberrant carbohydrate structures, offer attractive alternatives. Among these, the sialyl-Tn (STn) antigen stands out for its prevalent presence in various epithelial tumors.

View Article and Find Full Text PDF