Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Organic room-temperature phosphorescence (RTP) materials hold significant promise for applications in optoelectronics, information security, and bioimaging. Recently, significant progress has been made in RTP materials and vacuum-deposited organic light-emitting diode (OLED) devices. However, the performance of solution-processed OLEDs is seriously lagging behind due to the lack of RTP molecular strategies that balance exciton stability and solution processability at the single-molecule scale. In this work, we propose an acceptor dendronization strategy for designing RTP materials and successfully achieving highly efficient and stable RTP emissions. This strategy can simultaneously enhance the various processes involved in RTP emission at the single-molecule level: increase the intersystem crossing channels, enhance the spin-orbit coupling constants between T and S, and suppress molecular motion. Consequently, it promotes intersystem crossing and triplet radiative transition while inhibiting nonradiative transition, thereby efficiently enhancing RTP emission. A proof-of-concept acceptor-dendronized dendrimer exhibits long phosphorescence lifetimes in the millisecond range in ambient solution and near 100% photoluminescent quantum yields in the doped films. This is the first reported RTP dendrimer to date. An OLED fabricated using this dendrimer in a sky-blue emission achieves an external quantum efficiency of 25.1%, which represents the state-of-the-art efficiency based on solution-processed RTP-OLEDs to date. Our findings offer definitive guidelines for the molecular engineering of RTP materials and pave the way for innovative RTP systems in diverse optoelectronic applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.5c06288DOI Listing

Publication Analysis

Top Keywords

rtp materials
16
rtp
10
organic room-temperature
8
room-temperature phosphorescence
8
acceptor dendronization
8
rtp emission
8
intersystem crossing
8
achieving efficient
4
efficient organic
4
phosphorescence acceptor
4

Similar Publications

BN-fused aromatic compounds have garnered significant attention due to their unique electronic structures and exceptional photophysical properties, positioning them as highly promising candidates for applications in organic optoelectronics. However, the regioselective synthesis of BN isomers remains a formidable challenge, primarily stemming from the difficulty in precisely controlling reaction sites, limiting structural diversity and property tunability. Herein, we propose a regioselective synthetic strategy that employs 2,1-BN-naphthalene derivatives, wherein selective activation of N-H and C-H bonds is achieved in conjunction with -halogenated phenylboronic acids.

View Article and Find Full Text PDF

Liquid is the most flexible state of condensed matter and shows promise as a functional soft material. However, these same characteristics make it challenging to achieve efficient room-temperature phosphorescence (RTP) from metal-free organic molecular liquids. Herein, we report efficient RTP from liquefied thienyl diketones bearing one or two dimethyloctylsilyl (DMOS) substituents.

View Article and Find Full Text PDF

Color-Tunable Circularly Polarized Room-Temperature Phosphorescence by Intermolecular Phosphorescence Resonance Energy Transfer in a Chiral Co-assembled Liquid Crystal Polymer Network.

J Phys Chem Lett

September 2025

State Key Laboratory of Analytical Chemistry for Life Sciences, Engineering Research Center of Photoresist Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.

Circularly polarized room-temperature phosphorescent (CP-RTP) materials have been attracting great attention due to their potential applications in anticounterfeiting. In this study, we designed and synthesized a host-guest copolymer () with strong phosphorescence emission and a long emission lifetime using a self-doping strategy. The co-assembled liquid crystal polymer networks / doped with demonstrated a stronger RTP emission and longer lifetime (τ = 148 ms).

View Article and Find Full Text PDF

Achieving Efficient Lifetime-Tunable Room-temperature Phosphorescent Cellulose with Excitation Wavelength- and Time-Dependence.

Small

September 2025

Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China.

The precise modulation of the lifetime and the responsive properties of room-temperature phosphorescence (RTP) is essential for realizing its multifunctional applications. Herein, a facile strategy is presented to achieve a series of cellulose benzoate esters (CBE-X, X = H/CH/OH/NH) with lifetime-tunable RTP through substituent engineering. Enhancing the electron-donating ability of CBE-X effectively modulates the HOMO-LUMO gap, exciton energy, spin-orbit coupling, and interaction between cellulose chains, thereby enabling control over the RTP lifetime.

View Article and Find Full Text PDF

Purpose: Muscle injuries are common in competitive sports. Magnetic resonance imaging (MRI) and ultrasound (US) are the most commonly used methods for evaluating muscle injuries. Several classification systems for muscle injuries have been published.

View Article and Find Full Text PDF