98%
921
2 minutes
20
Background: Recent decades have witnessed a steady decrease in the use of race categories in genomic studies. While studies that still include race categories vary in goal and type, these categories already build on a history during which racial color lines have been enforced and adjusted in the service of social and political systems of power and disenfranchisement. For early modern classification systems, data collection was also considerably arbitrary and limited. Fixed, discrete classifications have limited the study of human genomic variation and disrupted widely spread genetic and phenotypic continuums across geographic scales. Relatedly, the use of broad and predefined classification schemes-e.g. continent-based-across traits can risk missing important trait-specific genomic signals.
Methods: To address these issues, we introduce a dynamic approach to clustering human genomics cohorts based on genomic variation in trait-specific loci and without using a set of predefined categories. We tested the approach on whole-exome sequencing datasets in ten cancer types and partitioned them based on germline variants in cancer-relevant genes that could confer cancer type-specific disease predisposition.
Results: Results demonstrate clustering patterns that transcend discrete continent-based categories across cancer types. Functional analysis based on cancer type-specific clusterings also captures the fundamental biological processes underlying cancer, differentiates between dynamic clusters on a functional level, and identifies novel potential drivers overlooked by a predefined continent-based clustering.
Conclusions: Through a trait-based lens, the dynamic clustering approach reveals genomic patterns that transcend predefined classification categories. We propose that coupled with diverse data collection, new clustering approaches have the potential to draw a more complete portrait of genomic variation and to address, in parallel, technical and social aspects of its study.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12082885 | PMC |
http://dx.doi.org/10.1186/s12920-025-02154-z | DOI Listing |
Genome Biol
September 2025
Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China.
Background: Centromeres are crucial for precise chromosome segregation and maintaining genome stability during cell division. However, their evolutionary dynamics, particularly in polyploid organisms with complex genomic architectures, remain largely enigmatic. Allopolyploid wheat, with its well-defined hierarchical ploidy series and recent polyploidization history, serves as an excellent model to explore centromere evolution.
View Article and Find Full Text PDFGenome Biol
September 2025
Center for Genomic Medicine, Cardiovascular Research Center, , Massachusetts General Hospital Simches Research Center, 185 Cambridge Street, CPZN 5.238,, Boston, MA, 02114, USA.
Background: Rare genetic variation provided by whole genome sequence datasets has been relatively less explored for its contributions to human traits. Meta-analysis of sequencing data offers advantages by integrating larger sample sizes from diverse cohorts, thereby increasing the likelihood of discovering novel insights into complex traits. Furthermore, emerging methods in genome-wide rare variant association testing further improve power and interpretability.
View Article and Find Full Text PDFTheor Appl Genet
September 2025
Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands.
Potato bolters are caused by excision of a transposon from the StCDF1.3 allele, resulting in a somatic mutant with late maturity. Somatic mutations during vegetative propagation can lead to novel genotypes, known as sports.
View Article and Find Full Text PDFNat Metab
September 2025
Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK.
Young-onset monogenic disorders often show variable penetrance, yet the underlying causes remain poorly understood. Uncovering these influences could reveal new biological mechanisms and enhance risk prediction for monogenic diseases. Here we show that polygenic background substantially shapes the clinical presentation of maturity-onset diabetes of the young (MODY), a common monogenic form of diabetes that typically presents in adolescence or early adulthood.
View Article and Find Full Text PDFBiol Lett
September 2025
Department of Vertebrate Zoology, Division of Mammals, Smithsonian National Museum of Natural History, Washington, DC, USA.
Accurately identifying evolutionarily significant units (ESUs) is crucial for conservation planning, especially for species like pangolins threatened by overhunting and habitat loss. ESUs help categorize different pangolin populations, aiding in understanding their genetic diversity and distribution, which is vital for targeted conservation efforts. This research generated mitochondrial genomes from historical museum specimens of Sunda pangolins () from underrepresented locations, uncovering a new evolutionary lineage from the Mentawai Islands that diverged from Indochina and west Sundaland populations around 760 000 years ago.
View Article and Find Full Text PDF