Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Elucidating the regulatory mechanisms underlying the development of different brain regions in humans is essential for understanding advanced cognition and neuropsychiatric disorders. However, the spatiotemporal organization of three-dimensional (3D) chromatin structure and its regulatory functions across different brain regions remain poorly understood. Here, we generated an atlas of high-resolution 3D chromatin structure across six developing human brain regions, including the prefrontal cortex (PFC), primary visual cortex (V1), cerebellum (CB), subcortical corpus striatum (CS), thalamus (TL), and hippocampus (HP), spanning gestational weeks 11-26. We found that the spatial and temporal dynamics of 3D chromatin organization play a key role in regulating brain region development. We also identified H3K27ac-marked super-enhancers as key contributors to shaping brain region-specific 3D chromatin structures and gene expression patterns. Finally, we uncovered hundreds of neuropsychiatric GWAS SNP-linked genes, shedding light on critical molecules in various neuropsychiatric disorders. In summary, our findings provide important insights into the 3D chromatin regulatory mechanisms governing brain region-specific development and can serve as a valuable resource for advancing our understanding of neuropsychiatric disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12081887PMC
http://dx.doi.org/10.1038/s41421-025-00798-wDOI Listing

Publication Analysis

Top Keywords

brain regions
16
neuropsychiatric disorders
12
chromatin organization
8
regulatory mechanisms
8
chromatin structure
8
brain region-specific
8
brain
7
chromatin
5
spatiotemporal chromatin
4
organization multiple
4

Similar Publications

The lateral prefrontal cortex (LPFC) serves as a critical hub for higher-order cognitive and executive functions in the human brain, coordinating brain networks whose disruption has been implicated in many neurological and psychiatric disorders. While transcranial brain stimulation treatments often target the LPFC, our current understanding of connectivity profiles guiding these interventions based on electrophysiology remains limited. Here, we present a high-resolution probabilistic map of bidirectional effective connectivity between the LPFC and widespread cortical and subcortical regions.

View Article and Find Full Text PDF

EFMouse: A toolbox to model stimulation-induced electric fields in the mouse brain.

PLoS Comput Biol

September 2025

Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey, United States of America.

Research into the mechanisms underlying neuromodulation by tES using in-vivo animal models is key to overcoming experimental limitations in humans and essential to building a detailed understanding of the in-vivo consequences of tES. Insights from such animal models are needed to develop targeted and effective therapeutic applications of non-invasive brain stimulation in humans. The sheer difference in scale and geometry between animal models and the human brain contributes to the complexity of designing and interpreting animal studies.

View Article and Find Full Text PDF

Background: Stroke is a leading cause of death and disability globally, with frequent cognitive sequelae affecting up to 60% of stroke survivors. Despite the high prevalence of post-stroke cognitive impairment (PSCI), early detection remains underemphasized in clinical practice, with limited focus on broader neuropsychological and affective symptoms. Stroke elevates dementia risk and may act as a trigger for progressive neurodegenerative diseases.

View Article and Find Full Text PDF

IL-17A is a pro-inflammatory cytokine that significantly contributes to the pathogenesis of autoimmune diseases, including multiple sclerosis (MS). Previous studies have suggested that PARP-1 inhibitors can modulate IL-17A-mediated inflammation, prompting the investigation of Niraparib, an FDA-approved PARP-1 inhibitor, as a potential therapeutic agent for MS. In this study, we hypothesized that Niraparib could disrupt the interaction between IL-17A and its receptor, IL-17RA.

View Article and Find Full Text PDF

Obstructive sleep apnea (OSA), one of the most common sleep disorders globally, is closely linked to brain function. Resting-state electroencephalography (EEG), due to its convenience, cost-effectiveness, and high temporal resolution, serves as a valuable tool for exploring the human brain function. This study utilized a large cohort with 968 participants who joined in 15-minute daytime resting-state EEG acquisition and overnight polysomnography (PSG) monitoring.

View Article and Find Full Text PDF