Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Embryogenesis necessitates the precise orchestration of cellular events to establish tissue patterning, developmental robustness, and viability. Syncytial embryogenesis, as in Drosophila melanogaster, poses added challenges as the synchronous and rapid nuclear divisions prior to cellularization occur within a shared cytoplasm. While the first several rounds of nuclear divisions occur within the center of the embryo, the nuclei progressively migrate peripherally, giving rise to the syncytial blastoderm. This spatial choreography hinges upon the dynamic interplay of actin and microtubules. Actin and microtubules coordinate nuclear division and position while preventing deleterious nuclear collisions. Additionally, the cytoskeleton also facilitates the segregation of organelles and molecular cargoes, including cell fate determinants required for cellular differentiation. As development progresses, actin and microtubules drive cellularization events for both germline and somatic cell lineages. Cytoskeletal disruption causes developmental arrest and embryonic lethality, underscoring its importance for embryogenesis. Given the significance of the cytoskeleton to these events, its visualization remains a cornerstone of cell and developmental biology research. Indeed, studies of the Drosophila embryo cytoskeleton have yielded valuable insights into cell biological mechanisms and developmental pathways conserved in various systems. Nevertheless, achieving optimal preservation of filamentous cytoskeletal structures poses technical challenges. Here, we present an embryo fixation method tailored to enhance the visualization of actin and microtubules via standard light microscopy approaches. This protocol complements immunofluorescence and molecular labeling techniques, including the direct labeling of fluorescently tagged proteins or mRNAs. By enabling detailed analysis of the cytoskeleton, this method expands opportunities to investigate the molecular mechanisms underlying embryo development and related processes. © 2025 Wiley Periodicals LLC. Basic Protocol 1: Preparation of embryos for immunofluorescence of actin or microtubules Basic Protocol 2: Coupling immunofluorescence of the cytoskeleton with visualization of mRNAs via smFISH.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12083761PMC
http://dx.doi.org/10.1002/cpz1.70145DOI Listing

Publication Analysis

Top Keywords

actin microtubules
20
nuclear divisions
8
basic protocol
8
actin
5
microtubules
5
cytoskeleton
5
visualization
4
visualization cytoskeleton
4
cytoskeleton fixed
4
fixed drosophila
4

Similar Publications

A clinical and genotype-phenotype analysis of MACF1 variants.

Am J Hum Genet

September 2025

Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, Rotterdam 3000 CA, the Netherlands.

Microtubule-actin cross-linking factor 1 (MACF1) is a large protein of the spectraplakin family, which is essential for brain development. MACF1 interacts with microtubules through the growth arrest-specific 2 (Gas2)-related (GAR) domain. Heterozygous MACF1 missense variants affecting the zinc-binding residues in this domain result in a distinctive cortical and brain stem malformation.

View Article and Find Full Text PDF

Mitochondria continually undergo fission to maintain their network and health. Nascent fission sites are marked by the ER, which facilitates actin polymerization to drive calcium flux into the mitochondrion and constrict the inner mitochondrial membrane. Septins are a major eukaryotic cytoskeleton component that forms filaments that can both directly and indirectly modulate other cytoskeleton components, including actin.

View Article and Find Full Text PDF

Integrin β3 dysregulation impairs megakaryopoiesis and microparticle production via disrupting ROCK-dependent cytoskeletal dynamics.

J Thromb Haemost

September 2025

Key Laboratory of Thrombosis and Hemostasis of National Health Commission, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China; Engineering Center of Hematological Disease of Ministry of Education, Cyrus Tang Hematology Center, Collaborative Innovation

Background: Megakaryocyte (MK) fragmentation into proplatelets (PPTs) and microparticles (MKMPs) is well established, yet the mechanisms underlying MKMP generation remain unclear.

Objectives: In order to investigate the role of integrin β3 and cytoskeletal dynamics during megakaryopoiesis and explore potential therapeutic targets for thrombocytopenia.

Methods: Proplatelet formation and MKMP release were evaluated both in vivo and in vitro under integrin β3 receptor impaired environment.

View Article and Find Full Text PDF

ARHGAP10 is a novel microtubule-associated protein that regulates the resorption activity of osteoclasts.

J Biol Chem

August 2025

Centre de Recherche de Biologie Cellulaire de Montpellier (CRBM), Montpellier Univ., CNRS, 34293 Montpellier cedex 5, France. Electronic address:

Adult-bone homeostasis is maintained through the reciprocal actions of osteoclasts and osteoblasts, which respectively resorb and deposit new bone. Excessive osteoclast activity leads to bone loss and contributes to conditions like osteoporosis. Osteoclasts form a specialized adhesion structure called the actin ring that is crucial for bone resorption and relies on both the actin and microtubule cytoskeletons.

View Article and Find Full Text PDF

Acentrosomal aster with atypical microtubule polarity recruits cytokinesis signals to its center in Xenopus egg extracts.

J Cell Sci

September 2025

Section of Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.

Xenopus egg extracts can self-organize into cell-like compartments without the classic microtubule organizer centrosome. Compartment formation requires microtubules, but the organization of microtubules throughout the process remains unclear. Here, we show that the earliest organized microtubule structures to emerge during cell-like compartment formation are centrosome-independent asters.

View Article and Find Full Text PDF