A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Diverse Perspectives Illuminate the Intestinal Toxicity of Traditional and Biodegradable Agricultural Film Microplastics to under Varying Exposure Sequences. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The widespread use of plastic agricultural films necessitates a thorough evaluation of environmental risks posed by soil microplastics (MPs). While the intestinal tract is a critical site for MP interactions in soil organisms, current research predominantly focuses on overall physiological responses, overlooking organ-specific toxic mechanisms. To address this gap, we exposed earthworms () to polyethylene (PE) and biodegradable polylactic acid (PLA) MPs sourced from agricultural films at an environmentally realistic concentration of 1.0 g/kg. Incorporating natural earthworm mobility, we designed two exposure scenarios: migration from clean to contaminated soil (scenario A) and vice versa (scenario B). Machine learning-driven image analysis and phenotypic profiling revealed that PE induced more severe intestinal lesions than PLA, adversely affecting intestinal immune functions. Furthermore, PE resulted in greater oxidative damage and significantly activated immune proteins such as melanin and antimicrobial peptides through reprograming immune-related gene and protein pathways. Conversely, PLA predominantly disrupted intestinal digestive and absorptive functions, though the gut microbial community partially mitigated damage through structural and compositional adaptation. Compared with scenario A, earthworms in scenario B exhibited reduced tissue damage, enhanced digestive enzyme activity, and upregulated energy-related metabolites and cell proliferation genes, indicating partial recovery from MP-induced intestinal dysfunction. These findings elucidate the distinct toxicity mechanisms of conventional and biodegradable agricultural MPs on soil organisms, while the scenario-based approach advances risk assessment by aligning experimental design with real-world ecological behaviors.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.5c01932DOI Listing

Publication Analysis

Top Keywords

biodegradable agricultural
8
agricultural films
8
soil organisms
8
intestinal
6
diverse perspectives
4
perspectives illuminate
4
illuminate intestinal
4
intestinal toxicity
4
toxicity traditional
4
traditional biodegradable
4

Similar Publications