Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The field of artificial intelligence (AI) is expanding quickly. To mimic the structure and biological evolution of the human brain, AI was developed to enable computers to acquire knowledge and manipulate their surroundings. There have been notable developments in the use of AI in healthcare; it can enhance diagnosis and treatment in various medical specialties. The cost of prompt diagnosis and treatment is hampered by the absence of efficient, dependable, and reasonably priced detection and real-time monitoring. Smart health tracking systems integrating AI and nanoscience are an emerging frontier that solves these obstacles. Targeted delivery of drug systems, biosensing, imaging, and other diagnostic and therapeutic fields can widely benefit abundantly from nanoscience in healthcare. AI technology has the potential to expand biomedical applications by analyzing and interpreting biological data, speeding up drug discovery, and identifying novel molecules with predictive behavior. This review outlines the current obstacles and potential opportunities for delivering personal healthcare using AI-assisted clinical decision support systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12071765PMC
http://dx.doi.org/10.1039/d5na00032gDOI Listing

Publication Analysis

Top Keywords

biomedical applications
8
diagnosis treatment
8
review emerging
4
emerging trends
4
trends nanomaterial-driven
4
nanomaterial-driven biomedical
4
applications field
4
field artificial
4
artificial intelligence
4
intelligence expanding
4

Similar Publications

Accurate attribution of the areas and populations impacted by climate-related events often relies on linear distance-based methods, where the study unit is assigned temperature data to the closest weather station. We developed a novel method and data pipeline that provides a grid-based measure of exposure to extreme heat and cold events called Grid EXposure (, enabling linkage to individual-level human health data at different spatial scales. GridEX automates the gathering of station-based climatological data and provides estimates of apparent temperature, offering a more comprehensive representation of human thermal comfort and perceived temperature.

View Article and Find Full Text PDF

Characterization of skeletal muscle contraction using a flexible and wearable ultrasonic sensor.

Prog Mol Biol Transl Sci

September 2025

Department of Systems and Computer Engineering, Carleton University, Ottawa, ON, Canada. Electronic address:

Monitoring skeletal muscle contraction provides valuable information about the muscle mechanical properties, which can be helpful in various biomedical applications. This chapter presents a single-element flexible and wearable ultrasonic sensor (WUS) developed by our research group and its application for continuously monitoring and characterizing skeletal muscle contraction. The WUS is made from a 110-µm thick polyvinylidene fluoride piezoelectric polymer film.

View Article and Find Full Text PDF

Ingestible biosensors for drug delivery monitoring.

Prog Mol Biol Transl Sci

September 2025

School of Forensic Science, National Forensic Sciences University, Gandhinagar, Gujarat, India.

Ingestible biosensors are a mix of advanced biomedical engineering, digital health and precision pharmacotherapy. These miniaturised electronic devices are encapsulated in biocompatible materials, which operate within gastrointestinal (GI) tract. This enables real-time monitoring of pharmacological and physiological parameters.

View Article and Find Full Text PDF

The dynamic interaction between immune recognition molecules and signaling pathways in the innate immune response of Penaeus monodon to White Spot Syndrome Virus (WSSV) infection is unveiled in this study. Through comprehensive gene expression profiling, we demonstrate significant upregulation of key immune genes, including a specific C-type lectin and a defined ficolin isoform, in WSSV-infected hemocytes, underscoring their pivotal roles in pathogen recognition and antiviral defense. Leveraging advanced molecular techniques, we successfully expressed, purified, and characterized these recombinant proteins, revealing their time-dependent expression and high-affinity binding to lipopolysaccharides (LPS).

View Article and Find Full Text PDF

Targeted degradation of Werner syndrome helicase (WRN) via ligand-directed covalent hydrophobic tagging.

Eur J Med Chem

September 2025

State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China. Electronic address:

The Werner syndrome RecQ helicase (WRN) has recently emerged as a novel synthetic lethality target for microsatellite instability-high (MSI-H) cancers. However, available WRN inhibitors or degraders is still lacking so far. Particularly, chemically designed probes capable of degrading WRN irrespective of microsatellite status remain unexplored.

View Article and Find Full Text PDF