Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Mendelian randomization (MR) method utilizes genetic variants as instrumental variables to infer the causal effect of an exposure on an outcome. However, the impact of rare variants on traits is often neglected, and traditional MR assumptions can be violated by correlated horizontal pleiotropy (CHP) and uncorrelated horizontal pleiotropy (UHP). To address these issues, we propose a multivariable MR approach, an extension of the standard MR framework: MVMR incorporating Rare variants Accounting for multiple Risk factors and shared horizontal plEiotropy (RARE). In the simulation studies, we demonstrate that RARE effectively detects the causal effects of exposures on outcome with accounting for the impact of rare variants on causal inference. Additionally, we apply RARE to study the effects of high density lipoprotein and low density lipoprotein on type 2 diabetes and coronary atherosclerosis, respectively, thereby illustrating its robustness and effectiveness in real data analysis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12078940 | PMC |
http://dx.doi.org/10.1093/bib/bbaf214 | DOI Listing |