Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Biomass from halophytes is considered as a promising chemical feedstock. Its bioconversion to obtain reducing sugars and to concomitantly improve antioxidant potential has been described less frequently. This is the first report describing application of xylanase from Neobacillus sedimentimangrovi for the saccharification of Ipomoea pes-caprae (IPC) and Suaeda fruticosa (SF). In this study, the biomass IPC and SF was separately or co-pretreated by freeze-thaw and 1% HSO. Results showed that significant amount of reducing sugar was obtained by saccharification of acid and freeze-thaw pretreated IPC (44 mg g) and freeze-thaw pretreated SF (43 mg g). The residues after saccharification were also analyzed for their antioxidant potential where IPC residues exhibited 1.13 folds higher potential than that of SF. Antioxidant potential (83.9%) was obtained when purified xylanase was used for the saccharification of IPC. Moreover, absence of lignin-related peaks in the NMR and IR spectra of the treated substrates indicated efficient delignification. The characteristic peaks of the hemicellulosic fractions in saccharified samples were also disturbed, indicating changes in the crystallinity of the substrates. The SEM images and spectra of the saccharified substrates clearly indicated the degradation of hemicellulosic content by xylanse.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12076864PMC
http://dx.doi.org/10.1186/s12896-025-00974-6DOI Listing

Publication Analysis

Top Keywords

antioxidant potential
12
ipomoea pes-caprae
8
suaeda fruticosa
8
xylanase neobacillus
8
neobacillus sedimentimangrovi
8
freeze-thaw pretreated
8
ipc
5
bioconversion wild
4
wild ipomoea
4
pes-caprae suaeda
4

Similar Publications

Heart failure (HF) is a multifactorial and pathophysiological complex syndrome, involving not only neurohormonal activation but also oxidative stress, chronic low-grade inflammation, and metabolic derangements. Central to the cellular defence against oxidative damage is nuclear factor erythroid 2-related factor 2 (Nrf2), a transcription factor that orchestrates antioxidant and cytoprotective responses. Preclinical in vitro and in vivo studies reveal that Nrf2 signalling is consistently impaired in HF, contributing to the progression of myocardial dysfunction.

View Article and Find Full Text PDF

Background: Free radicals play a key role in spinal cord injury and curcumin has the potential to act as an antioxidant agent. Controlled delivery of curcumin can be achieved through encapsulation in bovine serum albumin to form nanoparticles, and acellular scaffold can bridge lesions and improve axonal growth in spinal cord injury.

Objective: In this study, we evaluated the antioxidant effects of the scaffold containing curcumin nanoparticles in the unilateral spinal cord injury model in male rats.

View Article and Find Full Text PDF

Mechanistic studies have been suggested that toxic effects of bleomycin are generally attributed to formation of free radicals, mitochondria damages, oxidative stress and inflammation. For this purpose, we explored the direct exposure of bleomycin and protective effects of the betanin and vanillic acid separately against its possible toxicity in rat lung isolated mitochondria. Various mitochondrial toxicity parameters were evaluated including; succinate dehydrogenases (SDH) activity, reactive oxygen species (ROS) formation, mitochondrial swelling, mitochondrial membrane potential (MMP) collapse, malondialdehyde (MDA) and glutathione disulfide (GSSG) levels.

View Article and Find Full Text PDF

Tuberculosis, caused by , persists as a significant worldwide health issue, resulting in millions of infections and fatalities each year. Treatment predominantly depends on first-line antibiotics, including Isoniazid (INH) and Rifampicin (RIF). Nevertheless, extended use of these medications is linked to considerable adverse effects, leading to various organ toxicities, especially hepatotoxicity and nephrotoxicity.

View Article and Find Full Text PDF

Background: Microglia are brain resident cells that control neural network maintenance, damage healing, and brain development. Microglia undergo apoptosis, cytokine production, and reactive free radicals of oxygen (ROS) in response to lipopolysaccharide (LPS) stimulation. TRPM2 is activated by LPS-induced oxidative stress, but it is inhibited by carvacrol (CARV) and N-(p-amylcinnamoyl)anthranilic acid (ACA).

View Article and Find Full Text PDF