Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Global warming and urbanization serve as critical research themes in fine-scale climate studies, particularly in developed cities. This study aims to provide a high spatiotemporal resolution dataset of near-surface air temperatures for densely developed urban areas. The dataset comprises daily maximum, minimum, and mean temperatures for the summer months (June to August) from 2019 to 2023, at a spatial resolution of 100 m, across the Jiangbei climate zone in China. We applied the Convolutional Long Short-Term Memory (ConvLSTM) deep learning model with multi-source data, including ERA5 temperature data, topography, landcover and vegetation fraction cover. Model evaluation indicates high accuracy, with mean absolute errors (MAE) ranging from 0.564 to 0.784 °C, root mean square errors (RMSE) from 0.733 to 1.027 °C, and coefficients of determination (R) from 0.892 to 0.943. Our dataset is distinguished by the 100 m spatial resolution and the inclusion of recent summer data from 2023 at a daily scale. This work is valuable for urban or inner-urban climate studies on heatwave mitigation policies and adaptation strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12078530 | PMC |
http://dx.doi.org/10.1038/s41597-025-05032-6 | DOI Listing |