Identification and analysis of diagnostic markers related to lactate metabolism in myocardial infarction.

Pathol Res Pract

Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China. Electronic address:

Published: July 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Lactate metabolism is implicated in myocardial infarction (MI), yet the underlying mechanisms are not fully understood. Identifying lactate metabolism-related genes (LMRGs) could uncover new diagnostic and therapeutic targets for MI. We conducted a bioinformatics analysis on GeneCards database to identify 498 LMRGs and intersected them with differentially expressed genes (DEGs) from MI samples, yielding 17 key genes. We utilized consensus clustering and weighted gene co-expression network analysis (WGCNA) to refine our gene list to 981 candidate genes. Machine learning algorithms identified three biomarkers: OLIG1, LIN52, and RLBP1, associated with 'ribosome' and 'carbon metabolism' pathways. Enrichment analyses and immune microenvironment assessments were performed, and networks including drug-gene interactions and kinase-transcription factor (TF)-mRNA-miRNA were constructed to explore the functions and potential therapeutic implications of these genes. The three biomarkers showed significant correlations with immune cell types, with OLIG1 having the highest positive correlation with monocytes and the highest negative correlation with neutrophils. The drug-gene network revealed potential interactions such as methapyrilene with LIN52 and 'bisphenol A' with RLBP1. The kinase-TF-mRNA-miRNA network comprised 209 nodes and 470 edges, indicating complex regulatory mechanisms. Our study identified three key biomarkers, OLIG1, LIN52, and RLBP1, in lactate metabolism associated with MI, providing insights into potential diagnostic markers and therapeutic targets. These findings warrant further investigation into the molecular mechanisms of these biomarkers in MI.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.prp.2025.156010DOI Listing

Publication Analysis

Top Keywords

lactate metabolism
12
diagnostic markers
8
myocardial infarction
8
therapeutic targets
8
identified three
8
three biomarkers
8
biomarkers olig1
8
olig1 lin52
8
lin52 rlbp1
8
genes
5

Similar Publications

Introduction: Lactate has emerged as a multifunctional signaling molecule regulating various physiological and pathological processes. Furthermore, lactylation, a newly identified posttranslational modification triggered by lactate accumulation, plays significant roles in human health and diseases. This study aims to investigate the roles of lactate/lactylation in respiratory diseases.

View Article and Find Full Text PDF

Electroactive bacteria (EAB) hold great promise for the development of electrochemical biosensors given their unique ability to transfer electrons extracellularly via specialized pathways, a process termed extracellular electron transfer (EET). Ongoing research aims to overcome current limitations and fully harness the potential of EABs for high-performance biosensing applications. Herein, we report the fabrication of an electrochemical microsensor based on biomineralized electroactive bacteria, specifically MR-1.

View Article and Find Full Text PDF

Introduction: Anti-N-methyl-D-aspartate receptor (NMDA-R) encephalitis is a neuropsychiatric disorder with additional psychiatric features caused by NMDA-R immunoglobulin G (IgG) antibodies in cerebrospinal fluid (CSF). This report presents the follow-up of a patient in whom we assumed mild NMDA-R encephalitis in the first psychotic episode.

Case Study: A patient with a prior episode of an acute polymorphic psychotic syndrome relapsed five and a half years later following a severe COVID-19 infection.

View Article and Find Full Text PDF

Atherosclerosis (AS) is a chronic inflammatory disease driven by endothelial dysfunction, vascular smooth muscle cell proliferation, and insufficient resolution of inflammation. Nitric oxide (NO) plays a crucial role in vascular homeostasis by promoting endothelial cell proliferation, maintaining endothelial integrity, suppressing smooth muscle cell hyperplasia, and exerting potent anti-inflammatory effects. However, clinical application of NO is hindered by its short half-life, lack of targeting, and uncontrolled release.

View Article and Find Full Text PDF

SLC16A3 (MCT4) expression in tumor immunity and Metabolism: Insights from pan-cancer analysis.

Biochem Biophys Rep

June 2025

The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China.

Background: SLC16A3, a highly expressed H + -coupled symporter, facilitates lactate transport via monocarboxylate transporters (MCTs), contributing to acidosis. Although SLC16A3 has been implicated in tumor development, its role in tumor immunity remains unclear.

Methods: A pan-cancer analysis was conducted using datasets from The Cancer Genome Atlas, Cancer Cell Line Encyclopedia, and Genotype-Tissue Expression projects.

View Article and Find Full Text PDF