Design and synthetic approaches to thalidomide based small molecule degraders.

Eur J Med Chem

Department of Chemistry, University at Buffalo, The State University of New York, Amherst, NY, 14260, United States; Department of Chemistry, University of Delhi, Delhi, 110007, India. Electronic address:

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Thalidomide has been used as a repurposed drug for treating multiple myeloma since 1997. Several novel anticancer drugs containing thalidomide active moiety has been discovered since then. Many thalidomide drug candidates with tuned linker size have been instrumental in inhibiting histone deacetylase, kinase, transcription factors etc. and facilitate selective degradation of E3 ligase and other enzymes. Here we are focused on small molecule degraders that are being tailored with tweaking synthetic architectures around thalidomide chemical motif towards the development of promising drug candidates. Interesting biomedical applications of thalidomide-based degraders with recent developments including pharmacokinetic profiles, protein stability, activity studies, degradation assays, and antitumor response are elucidated.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2025.117700DOI Listing

Publication Analysis

Top Keywords

small molecule
8
molecule degraders
8
drug candidates
8
thalidomide
5
design synthetic
4
synthetic approaches
4
approaches thalidomide
4
thalidomide based
4
based small
4
degraders thalidomide
4

Similar Publications

Real-Space Quantitative Molecular Analysis at Single-Molecule Resolution.

J Am Chem Soc

September 2025

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu P. R. China.

Advances in molecular analysis and characterization techniques should revolutionize the methods for scientific exploration across physics, chemistry, and biology, fundamentally overturning our understanding of interactions and processes that govern molecular behavior at the microscopic level. Currently, the absence of a molecular analysis method that can both quantify molecules and achieve single-molecule spatial resolution hinders our study of complex molecular systems in sorption and catalysis. Here, we propose a quantitative analysis strategy for small molecules confined in ZSM-5, a zeolite material extensively used in catalysis and gas separation, based on low-dose transmission electron microscopy.

View Article and Find Full Text PDF

Cancer-associated fibroblasts as a potential therapeutic target for thyroid cancers.

Int J Surg

September 2025

BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.

Thyroid cancer, a prevalent endocrine malignancy, is influenced by its tumor microenvironment (TME), with cancer-associated fibroblasts (CAFs) playing a pivotal role in disease progression. Molecularly, CAFs orchestrate a pro-tumorigenic niche via cytokine secretion and extracellular matrix (ECM) stiffening, underscoring their targetability. Therapeutic strategies, including small molecule inhibitor-based therapies, immune-based therapies, nanoparticle-based approaches, and combination regimens, have been evaluated for their efficacy in disrupting CAF functionality.

View Article and Find Full Text PDF

In the opportunistic pathogen , hyphal growth and virulence factor expression are regulated by environmental and chemical cues. Farnesol is a secreted autoregulatory molecule that represses filamentation. It is derived from farnesyl pyrophosphate (FPP), an ergosterol biosynthesis pathway intermediate.

View Article and Find Full Text PDF

Molecular Hybrid Bridging for Efficient and Stable Inverted Perovskite Solar Cells without a Pre-Deposited Hole Transporting Layer.

Adv Mater

September 2025

Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China.

Establishing a low-resistance perovskite/ITO contact using self-assembled molecules (SAMs) is crucial for efficient hole transport in perovskite solar cells (PSCs) without a pre-deposited hole-transporting layer. However, SAMs at the buried interface often encounter issues like nonuniform distribution and molecular aggregation during the extrusion process, leading to significant energy loss. Herein, a molecular hybrid bridging strategy by incorporating a novel small molecule is proposed, (2-aminothiazole-4-yl)acetic acid (ATAA), featuring a thiazole ring and carboxylic acid group, along with the commonly used SAM, 4-(2,7-dibromo-9,9-dimethylacridin-10(9H)-yl)butyl)phosphonic acid (DMAcPA), into the perovskite precursor to synergistically optimize the buried interface.

View Article and Find Full Text PDF

Preventing Glioblastoma Relapse by Igniting Innate Immunity through Mitochondrial Stress in the Surgical Cavity.

Adv Mater

September 2025

Department of Neurosurgery, Qilu Hospital and Shandong Key Laboratory of Brain Health and Function Remodeling, Institute of Brain and Brain-Inspired Science, Jinan Microecological Biomedicine Shandong Laboratory, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong,

Innate immunity is crucial in orchestrating the brain immune response, however, glioblastoma multiforme (GBM) has evolved sophisticated mechanisms to evade innate immune surveillance, posing significant challenges for current immunotherapies. Here, a therapeutic strategy is reported that aims at reactivating innate immune responses in GBM via targeted induction of mitochondrial stress, thereby enhancing tumor immunogenicity. Specifically, innate immune-stimulating nanoparticles (INSTNA) are developed, encapsulating positively charged iridium-based complexes (Ir-mito) and small interfering RNA against Methylation-Controlled J protein (si-MCJ) to attenuate mitochondrial respiration.

View Article and Find Full Text PDF