Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Metal-organic polymers (MOPs) are gaining booming attention as atomically precise single-site catalysts for electrochemical nitrate-to-ammonia conversion owing to their regular structures and tunable functionalities. However, a molecular-level understanding is still lacking for the design of more efficient MOP electrocatalysts. Here, we report the construction of high-symmetry coordination MOPs (, , and ), utilizing square-planar tetranuclear building units [M(μ-O)(CO)] (M = Mn, Fe, or Co) bridged by 2,4,6-tris(4-carboxyphenyl)-1,3,5-triazine (HTATB) ligands. These MOPs possess distinct coordination motifs with well-defined porosity, high-density catalytic sites, accessible mass transfer channels, and nanoconfined chemical environments. Benefited from the unique metal-organic coordination framework, demonstrated a remarkable ammonia production Faradaic efficiency (FE) of ∼98% across a wide potential range (-0.7 to -1.0 V (vs RHE)) in the electrocatalytic nitrate reduction reaction (NITRR) and maintained stable performance over a long duration when tested in a flow cell at an industrially relevant current density of ∼332.1 mA cm. Furthermore, in situ spectroscopic analyses, combined with theoretical calculations, elucidate the intrinsic reaction pathway of the model during the NITRR process. These findings offer insightful perspectives on the strategic design of electrocatalysts with symmetrical configurations for the purification of nitrate-containing wastewater and the green synthesis of ammonia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.5c06650 | DOI Listing |