98%
921
2 minutes
20
Treatment of injuries to soft elastic organs is often hindered by challenging anatomical features and limitations of existing sealant materials, which may lack adequate tissue adhesion, elasticity, biocompatibility, and effective hemostatic properties. To address these clinical challenges, we developed an injectable elastic sealant formulated with methacryloyl-modified human recombinant tropoelastin (MeTro) and Laponite silicate nanoplatelets (SNs). We optimized the hydrogel formulation for mechanical properties, adhesion, biocompatibility, and hemostatic properties and used visible light for cross-linking to improve safety. MeTro/SN hydrogels had increased tissue adhesion strength and burst pressure in vitro and ex vivo compared with MeTro alone or commercial sealants. The addition of SNs to the hydrogels facilitated faster blood clotting in vitro without increasing hemolysis. Applied to incisional injuries on rat lungs or aortas, MeTro/SN had burst pressures comparable to those of native tissue and greater than those of MeTro after a 7-day in vivo application. On porcine lungs, MeTro/SN also supported effective lung sealing and burst pressure similar to native lung 14 days after injury sealing. In a rodent tail hemostasis model, MeTro/SN reduced bleeding compared with MeTro. In an injured porcine lung model, early hemostasis was better than the tested commercial sealants. The results demonstrated that MeTro/SN provided effective tissue sealing and promoted hemostasis in a time frame that minimized blood loss without causing a major inflammatory response. These findings highlight the translational potential of our engineered sealant with biomimetic mechanics, durable tissue adhesion, and rapid hemostasis as a multipronged approach for the sealing and repair of traumatic injuries to soft organs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/scitranslmed.adr6458 | DOI Listing |
Sci Adv
September 2025
School of Electrical and Electronic Engineering, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
Brain-computer interfaces (BCIs) enable direct communication between the brain and computers. However, their long-term functionality remains limited due to signal degradation caused by acute insertion trauma, chronic foreign body reaction (FBR), and biofouling at the device-tissue interface. To address these challenges, we introduce a multifunctional surface modification strategy called targeting-specific interaction and blocking nonspecific adhesion (TAB) coating for flexible fiber, achieving a synergistic integration of mechanical compliance and biochemical stability.
View Article and Find Full Text PDFFASEB J
September 2025
Department of Plastic Surgery and Burn, Third XiangYa Hospital, Central South University, Changsha, Hunan, China.
Defective wounds pose health risks, and treatment is challenging. Umbilical cord-derived mesenchymal stem cells (UCMSCs) show promise for healing. Primary UCMSCs were isolated and extracted in vitro, and the proliferation and differentiation characteristics were detected by flow cytometry and trilineage differentiation, and a 3D spherical cell culture was performed.
View Article and Find Full Text PDFRegen Biomater
August 2025
College of Textiles & Clothing, Institute of Functional Textiles and Advanced Materials, Qingdao 266071, China.
Bacterial infection in the injured skin may threaten the wound repair and skin regeneration owing to aggravated inflammation. The multifunctional dressings with persistent antibacterial activity and improved anti-inflammatory capability are urgently required. Herein, a type of heterogeneous zinc/catechol-derived resin microspheres (Zn/CFRs) composed of zinc ions (Zn) and zinc oxide (ZnO) nanoparticles was developed to impart the methacrylamide chitosan (CSMA)-oxidized hyaluronic acid (OHA) hydrogel with a persistent Zn release behavior.
View Article and Find Full Text PDFDev Growth Differ
September 2025
Laboratory for Epithelial Morphogenesis, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.
Multicellular organisms generate organizational complexity through morphogenesis, in which mechanical forces orchestrate the movements and deformations of cells and tissues, while chemical signals regulate the molecular events that generate and coordinate these forces. One common denominator that is critical both for mechanics and biochemistry is material property. Material properties define how materials deform or rearrange under applied forces, and how rapidly molecules interact or spread in space and time.
View Article and Find Full Text PDFCancer Metastasis Rev
September 2025
Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-Sur-Yvette, 91198, France.
Integrins constitute a large and diverse family of cell adhesion molecules that play essential roles in regulating tumor cell differentiation, migration, proliferation, and neovascularization. Tumor cell-derived exosomes, a subtype of extracellular vesicles, are enriched with integrins that reflect their cells of origin. These exosomal integrins can promote extracellular matrix remodeling, immune suppression, and vascular remodeling and are closely linked to tumor progression and metastasis, acting as pivotal players in mediating organ-specific metastasis.
View Article and Find Full Text PDF