Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Plant height (PH), leaf width (LW), and leaf angle (LA) are critical phenotypic parameters in maize that reliably indicate plant growth status, lodging resistance, and yield potential. While various lidar-based methods have been developed for acquiring these parameters, existing approaches face limitations, including low automation, prolonged measurement duration, and weak environmental interference resistance. This study proposes a novel estimation method for maize PH, LW, and LA based on point cloud projection. The methodology comprises four key stages. First, 3D point cloud data of maize plants are acquired during middle-late growth stages using lidar sensors. Second, a Gaussian mixture model (GMM) is employed for point cloud registration to enhance plant morphological features, resulting in spliced maize point clouds. Third, filtering techniques remove background noise and weeds, followed by a combined point cloud projection and Euclidean clustering approach for stem-leaf segmentation. Finally, PH is determined by calculating vertical distance from plant apex to base, LW is measured through linear fitting of leaf midveins with perpendicular line intersections on projected contours, and LA is derived from plant skeleton diagrams constructed via linear fitting to identify stem apex, stem-leaf junctions, and midrib points. Field validation demonstrated that the method achieves 99%, 86%, and 97% accuracy for PH, LW, and LA estimation, respectively, enabling rapid automated measurement during critical growth phases and providing an efficient solution for maize cultivation automation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12074292PMC
http://dx.doi.org/10.3390/s25092854DOI Listing

Publication Analysis

Top Keywords

point cloud
20
phenotypic parameters
8
based point
8
cloud projection
8
linear fitting
8
point
6
cloud
5
plant
5
maize
5
measurement maize
4

Similar Publications

3D Structural Phenotype of the Optic Nerve Head in Glaucoma and Myopia - A Key to Improving Glaucoma Diagnosis in Myopic Populations.

Am J Ophthalmol

September 2025

Singapore Eye Research Institute, Singapore National Eye Centre, Singapore; Duke-NUS Graduate Medical School, Singapore; Department of Ophthalmology, Emory University School of Medicine, Emory University; Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta

Purpose: To characterize the 3D structural phenotypes of the optic nerve head (ONH) in patients with glaucoma, high myopia, and concurrent high myopia and glaucoma, and to evaluate their variations across these conditions.

Design: Retrospective cross-sectional study.

Participants: A total of 685 optical coherence tomography (OCT) scans from 754 subjects of Singapore-Chinese ethnicity, including 256 healthy (H), 94 highly myopic (HM), 227 glaucomatous (G), and 108 highly myopic with glaucoma (HMG) cases METHODS: We segmented the retinal and connective tissue layers from OCT volumes and their boundary edges were converted into 3D point clouds.

View Article and Find Full Text PDF

Inter-modality feature prediction through multimodal fusion for 3D shape defect detection.

Neural Netw

September 2025

School of Automation and Intelligent Sensing, Shanghai Jiao Tong University, Shanghai, 200240, China; Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, 200240, China; Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200240, China.

3D shape defect detection plays an important role in autonomous industrial inspection. However, accurate detection of anomalies remains challenging due to the complexity of multimodal sensor data, especially when both color and structural information are required. In this work, we propose a lightweight inter-modality feature prediction framework that effectively utilizes multimodal fused features from the inputs of RGB, depth and point clouds for efficient 3D shape defect detection.

View Article and Find Full Text PDF

This work reports the nanoscale micellar formation in single and mixed surfactant systems by combining an amphiphilic graft copolymer, Soluplus® (primary surfactant), blended with other polyoxyethylene (POE)-based nonionic surfactants such as Kolliphor® HS15, Kolliphor® EL, Tween-80, TPGS®, and Pluronics® P123 in an aqueous solution environment. The solution behaviour of these surfactants as a single system were analyzed in a wide range of surfactant concentrations and temperatures. Rheological measurements revealed distinct solution behaviour in the case of Soluplus®, ranging from low-viscosity () and fluid-like behavior at ≤20% w/v to a highly viscous state at ≥90% w/v, where the loss modulus ('') exceeded the storage modulus (').

View Article and Find Full Text PDF

Background And Objectives: Stroke is a leading cause of long-term disability. Etanercept, a competitive tumor necrosis factor-α inhibitor, has been proposed as a potential treatment for post-stroke impairments when given through a perispinal subcutaneous injection. We aimed to evaluate the safety and efficacy of perispinal etanercept in patients with chronic stroke.

View Article and Find Full Text PDF

Multi-modal data fusion plays a critical role in enhancing the accuracy and robustness of perception systems for autonomous driving, especially for the detection of small objects. However, small object detection remains particularly challenging due to sparse LiDAR points and low-resolution image features, which often lead to missed or imprecise detections. Currently, many methods process LiDAR point clouds and visible-light camera images separately, and then fuse them in the detection head.

View Article and Find Full Text PDF