Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Agriculture needs to produce more with fewer resources to satisfy the world's demands. Labor shortages, especially during harvest seasons, emphasize the need for agricultural automation. However, the high cost of commercially available robotic manipulators, ranging from EUR 3000 to EUR 500,000, is a significant barrier. This research addresses the challenges posed by low-cost manipulators, such as inaccuracy, limited sensor feedback, and dynamic uncertainties. Three control strategies for a low-cost agricultural SCARA manipulator were developed and benchmarked: a Sliding Mode Controller (SMC), a Reinforcement Learning (RL) Controller, and a novel Proportional-Integral (PI) controller with a self-tuning feedforward element (PIFF). The results show the best response time was obtained using the SMC, but with joint movement jitter. The RL controller showed sudden breaks and overshot upon reaching the setpoint. Finally, the PIFF controller showed the smoothest reference tracking but was more susceptible to changes in system dynamics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12074353PMC
http://dx.doi.org/10.3390/s25092676DOI Listing

Publication Analysis

Top Keywords

low-cost agricultural
8
agricultural scara
8
controller
5
benchmarking controllers
4
controllers low-cost
4
scara manipulators
4
manipulators agriculture
4
agriculture produce
4
produce fewer
4
fewer resources
4

Similar Publications

In vitro simulation of rumen fermentation is critical for improving feed efficiency, assessing dietary interventions, and supporting methane mitigation strategies in ruminant production systems. However, existing fermentation platforms are often expensive, technically complex, or poorly suited for long-term microbial viability under near-rumen conditions-especially in resource-limited settings. This study presents the development and validation of a modular, low-cost engineered to replicate key physiological parameters of the rumen, including temperature control (39-40 °C), continuous buffering via artificial saliva infusion, anaerobic regulation, and simulated motility through mixing pumps.

View Article and Find Full Text PDF

Removal of antibiotics from anaerobically digested biosolids via synergistic release using ethylenediaminetetraacetic acid disodium salt dihydrate and sodium persulfate oxidation.

J Environ Manage

September 2025

Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China. Electronic address:

Large-scale anaerobic treatment involves a high risk of antibiotic pollution in anaerobically digested (AD) biosolids, which hinders the efficient utilization of farmland AD biosolids. Herein, a process for the in situ removal of antibiotics from AD biosolids using ethylenediaminetetraacetic acid disodium salt dihydrate as the release agent synergized with sodium persulfate oxidation is reported. The developed process was used to remove antibiotics from actual AD biosolids.

View Article and Find Full Text PDF

Advances in cellulosic natural fibre-reinforced polymer composites: Properties, additive manufacturing and hybridisation - A review.

Int J Biol Macromol

September 2025

Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok, Thailand.

This review critically examines the rapidly advancing field of cellulosic natural fibre-reinforced polymer (NFRP) composites, with a particular emphasis on material innovation aligned with sustainability and environmental responsibility. The review presents a systematic analysis of recent literature evaluating the mechanical, thermal, water absorption, wear, and machining characteristics of NFRP composites, as well as the influence of advanced processing approaches such as additive manufacturing. Special attention is given to the structure-property relationships and hybridisation strategies employed to address limitations such as relatively lower mechanical performance and durability compared to synthetic fibre composites.

View Article and Find Full Text PDF

Research advances in SERS-based sensing platforms for multiplex mycotoxin detection in feed.

Nanoscale Adv

September 2025

State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences Beijing 100193 China

Mycotoxins in feed can pose significant risks to the health of livestock and poultry, leading to reduced economic returns and impaired production efficiency, thereby impeding the sustainable development of the livestock industry. Consequently, the exploration of highly sensitive, simple and rapid detection methods for trace mycotoxins in feed is crucial for ensuring feed safety and promoting industrial sustainability. Surface-enhanced Raman spectroscopy (SERS), a rapid detection method characterized by high sensitivity, ease of operation, and resistance to water interference, has gained substantial traction in mycotoxin detection within feed matrices in recent years.

View Article and Find Full Text PDF

Despite being recognized as a low-cost food, rich in proteins and other nutrients, for years eggs have been the subject of controversy regarding a possible negative impact on human health linked to their frequent consumption and their cholesterol content. This narrative review describes the composition of eggs, the properties of individual nutrients, and the impact of their deficiency or excess on human health, and the development of several pathologies. The chemical-physical properties of the proteins and lipids contained in eggs and the environmental impact linked to their production are also considered.

View Article and Find Full Text PDF