Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Integrating strong mechanical properties and excellent optical properties for self-healing materials is challenging in both academia and industry. Robust self-healing polyurethane elastomers are expected to have superior mechanical properties, transparency, remarkable healing capability, and shape-memory performance via the adjustment of chemical and microphase separation structure. Herein, a robust transparent self-healable 4,4'-diphenylmethane diisocyanate (MDI)-based polyurethane elastomer containing disulfide bonds and branched structure (MPUE-SS) was synthesized. The chemical and topological structures, compatibility of soft-hard phases, and hard domain size of polyurethane could be adjusted via branched structure and mixed chain extender containing disulfide bonds and 1,4-butanediol (BDO), leading to enhanced self-healing, transparency, and mechanical properties. MPUE-SS exhibited a maximal tensile strength of 40 MPa. The microphase separation structure and reduced crystallinity led to a high transparency of about 91%, close to that of alicyclic polyurethane elastomers. After cutting in half and splicing, the MPUE-SS film recovered more than 95% of the original mechanical properties in 24 h. The shape recovery ratio at 40 °C and shape fixity ratio at -20 °C of MPUE-SS were 96.0% and 99.6%, respectively, higher than those of MPUE without disulfide bonds. Therefore, the chemical, topological structures, and microphase separation of polyurethane could be adjusted to achieve desired self-healing, transparency, shape-memory, and mechanical properties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12073319PMC
http://dx.doi.org/10.3390/polym17091243DOI Listing

Publication Analysis

Top Keywords

mechanical properties
20
microphase separation
12
disulfide bonds
12
mdi-based polyurethane
8
polyurethane elastomer
8
polyurethane elastomers
8
separation structure
8
branched structure
8
chemical topological
8
topological structures
8

Similar Publications

Ultra-High Zinc Utilization Enabled by MXene Anode for Flexible Dual-Plating Zn-Br Microbatteries.

J Phys Chem Lett

September 2025

College of Materials Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, P. R. China.

Aqueous zinc-ion microbatteries exhibit promising prospects for wearable devices due to their high safety and cost-effectiveness but face challenges such as low energy density and short cycle life. To address these challenges, a dual-plating flexible Zn-Br microbattery was developed using freestanding MXene films as a zinc metal free anode. The MXene anode retains no redundant Zn, as Zn from the electrolyte undergoes deposition/stripping reactions on its substrate, thereby eliminating the necessity for excess zinc.

View Article and Find Full Text PDF

In silico biophysics and rheology of blood and red blood cells in Gaucher Disease.

PLoS Comput Biol

September 2025

Division of Applied Mathematics, Brown University, Providence, Rhode Island, United States of America.

Gaucher Disease (GD) is a rare genetic disorder characterized by a deficiency in the enzyme glucocerebrosidase, leading to the accumulation of glucosylceramide in various cells, including red blood cells (RBCs). This accumulation results in altered biomechanical properties and rheological behavior of RBCs, which may play an important role in blood rheology and the development of bone infarcts, avascular necrosis (AVN) and other bone diseases associated with GD. In this study, dissipative particle dynamics (DPD) simulations are employed to investigate the biomechanics and rheology of blood and RBCs in GD under various flow conditions.

View Article and Find Full Text PDF

Van der Waals Epitaxy of CsPbI/MoS Heterojunction Phototransistors for Neuromorphic Computing.

J Phys Chem Lett

September 2025

Hunan Key Laboratory of Nanophotonics and Devices, Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics, Central South University, Changsha, Hunan 410083, China.

The optoelectronic properties of perovskite/two-dimensional (2D) material van der Waals heterojunctions provide greater potential for innovative neuromorphic devices. However, the traditional growth of heterojunctions still relies on strict lattice matching and high-temperature processes, which hinder high-quality interface construction and efficient carrier transport. Here, the 2D CsPbI/MoS heterojunction is realized via the van der Waals epitaxy process, overcoming lattice matching limitations.

View Article and Find Full Text PDF

Brain-computer interfaces (BCIs) enable direct communication between the brain and computers. However, their long-term functionality remains limited due to signal degradation caused by acute insertion trauma, chronic foreign body reaction (FBR), and biofouling at the device-tissue interface. To address these challenges, we introduce a multifunctional surface modification strategy called targeting-specific interaction and blocking nonspecific adhesion (TAB) coating for flexible fiber, achieving a synergistic integration of mechanical compliance and biochemical stability.

View Article and Find Full Text PDF

Cicada rib-inspired tough films through nanoconfined crystallization for use in acoustic transducers.

Sci Adv

September 2025

State Key Laboratory of Bioinspired Interfacial Materials Science, School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, P. R. China.

Acoustic transducers require films that demonstrate both toughness and fatigue resistance, presenting notable challenges when achieved through conventional nanoscale reinforcing strategies. Here, we found that the rib structure of a cicada's tymbal exhibits exceptional toughness and fatigue resistance, attributed to its unique architecture composed of alternating soft and stiff polymer layers. Inspired by this rib structure, we developed a robust artificial rib film (ARF) using a nanoconfined crystallization strategy that involves the deposition of soft polyethylene oxide and stiff phenol formaldehyde.

View Article and Find Full Text PDF