Ecosystem engineers on tropical reefs in transition: giant barrel sponges in the Anthropocene.

J Exp Biol

Department of Biology and Marine Biology and Center for Marine Science, University of North Carolina Wilmington, Wilmington, NC 28409-3621, USA.

Published: May 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Tropical coral reef ecosystems are changing rapidly to an alternative state in which sponges are the dominant living habitat, with giant barrel sponges (GBSs, Xestospongia spp.) representing the largest biomass. Unlike other benthic reef organisms, GBSs are ecosystem engineers that pump large volumes of seawater, disrupting the benthic boundary layer and directing flow away from the reef surface and into the water column. The morphology and size of GBSs have made them particularly good experimental subjects to study the hydraulics of sponge pumping and the transformation that occurs as seawater is processed by the sponge holobiont (sponge cells and microbial symbionts). This Review is part of a series marking the 100th birthday of The Company of Biologists, which was founded by marine biologist George Parker Bidder III, who primarily worked on sponges. The Review provides an integrative assessment of research on GBSs with comparisons with what is known about other marine sponges. Recent discoveries suggest that ancient lineages of morphologically indistinguishable GBSs are responding to environmental changes over sub-decadal time periods to rapidly populate reefs stripped of coral cover by climate change. If GBSs remain robust to rising seawater temperatures, they will become the greatest source of habitat complexity on reefs of the future, so knowledge of their biology and physiology will be important to our understanding of these ecosystems.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jeb.250082DOI Listing

Publication Analysis

Top Keywords

ecosystem engineers
8
giant barrel
8
barrel sponges
8
gbss
6
sponges
5
engineers tropical
4
tropical reefs
4
reefs transition
4
transition giant
4
sponges anthropocene
4

Similar Publications

Biosynthetic potential of the culturable foliar fungi associated with field-grown lettuce.

Appl Microbiol Biotechnol

September 2025

School of Plant Sciences, The University of Arizona, 1140 E South Campus Drive, Forbes 303, Tucson, AZ, 85721, USA.

Fungal endophytes and epiphytes associated with plant leaves can play important ecological roles through the production of specialized metabolites encoded by biosynthetic gene clusters (BGCs). However, their functional capacity, especially in crops like lettuce (Lactuca sativa L.), remains poorly understood.

View Article and Find Full Text PDF

Echolocating bats provide vital ecosystem services and can be monitored effectively using passive acoustic monitoring (PAM) techniques. Duty-cycle subsampling is widely used to collect PAM data at regular ON/OFF cycles to circumvent battery and storage capacity constraints for long-term monitoring. However, the impact of duty-cycle subsampling and potential detector errors on estimating bat activity has not been systematically investigated for bats.

View Article and Find Full Text PDF

From Barren Rock to Thriving Life: How Nitrogen Fuels Microbial Carbon Fixation in Deglaciated Landscapes.

Environ Sci Technol

September 2025

Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China.

Rapidly expanding nascent ecosystems at glacier forefields under climate warming dramatically enhance the terrestrial carbon (C) sink. Microbial C fixation and degradation, closely implicated in nitrogen (N) transformation and plant-soil-microbe interactions, significantly regulate soil C accumulation. However, how shifts in microbial functional potential impact soil C sequestration during vegetation succession remains unclear.

View Article and Find Full Text PDF

Desert plant communities play an irreplaceable role in maintaining the ecological balance of arid areas. Understanding the spatial distribution pattern of desert plant diversity and its environmental response mechanism is particularly important for the protection of regional biodiversity, and combining phylogenetic information can provide more in-depth insights. To this end, this study conducted a survey of desert plant communities along the southeast to northwest direction of the Hexi Corridor, revealing the variation patterns of species and phylogenetic diversity (PD) indicators along longitude, latitude, and altitude, and explored the driving factors of these patterns in combination with geographical, climatic, and soil factors.

View Article and Find Full Text PDF

The rapid emergence of mineralized structures in diverse animal groups during the late Ediacaran and early Cambrian periods likely resulted from modifications of pre-adapted biomineralization genes inherited from a common ancestor. As the oldest extant phylum with mineralized structures, sponges are key to understanding animal biomineralization. Yet, the biomineralization process in sponges, particularly in forming spicules, is not well understood.

View Article and Find Full Text PDF