Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Digital microfluidic (DMF) technology is widely used in bioanalysis and chemical reactions due to its accuracy and flexibility in manipulating droplets. However, most DMF systems usually rely on complex electrode fabrication and high driving voltages. Sensor integration in DMF systems is also quite rare. In this study, a programmable magnetic digital microfluidic (PMDMF) platform integrated with electrochemical detection system was proposed. It enables non-contact, flexible droplet manipulation without complex processes and high voltages, meeting the requirements of automated electrochemical detection. The platform includes a magnetic control system, a microfluidic chip, and an electrochemical detection system. The magnetic control system consists of a microcoil array circuit board, a N52 permanent magnet, and an Arduino control module. N52 magnets generate localized magnetic fields to drive droplet movement, while the Arduino module enables programmable control for precise manipulation. The maximum average velocity of the droplet is about 3.9 cm/s. The microfluidic chip was fabricated using 3D printing and the superhydrophobic surface of chip was fabricated by spray coating. The electrochemical detection system consists of the MoS@CeO/PVA working electrode, Ag/AgCl reference electrode, and carbon counter electrode. To evaluate the practical value of the integrated platform, glucose in sweat was automatically and accurately detected. The proposed platform has a wide linear detection range (0.01-0.25 mM), a lower LOD (6.5 μM), a superior sensitivity (7833.54 μA·mM·cm), and excellent recovery rate (88.1-113.5%). It has an extensive potential for future application in the fields of medical diagnostics and point-of-care testing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12069685PMC
http://dx.doi.org/10.1038/s41378-025-00914-6DOI Listing

Publication Analysis

Top Keywords

electrochemical detection
20
detection system
16
digital microfluidic
12
programmable magnetic
8
magnetic digital
8
platform integrated
8
integrated electrochemical
8
dmf systems
8
magnetic control
8
control system
8

Similar Publications

The prompt and accurate identification of pathogenic bacteria is crucial for mitigating the transmission of infections. Conventional detection methods face limitations, including lengthy processing, complex sample pretreatment, high instrumentation costs, and insufficient sensitivity for rapid on-site screening. To address these challenges, an aptamer (Apt)-sensor based on functionalized magnetic nanoparticles (MNPs) was developed for detecting Escherichia coli.

View Article and Find Full Text PDF

Cardiovascular diseases (CVDs) remain a leading cause of death, particularly in developing countries, where their incidence continues to rise. Traditional CVD diagnostic methods are often time-consuming and inconvenient, necessitating more efficient alternatives. Rapid and accurate measurement of cardiac biomarkers released into body fluids is critical for early detection, timely intervention, and improved patient outcomes.

View Article and Find Full Text PDF

Electroactive bacteria (EAB) hold great promise for the development of electrochemical biosensors given their unique ability to transfer electrons extracellularly via specialized pathways, a process termed extracellular electron transfer (EET). Ongoing research aims to overcome current limitations and fully harness the potential of EABs for high-performance biosensing applications. Herein, we report the fabrication of an electrochemical microsensor based on biomineralized electroactive bacteria, specifically MR-1.

View Article and Find Full Text PDF

The unregulated use and improper disposal of active pharmaceutical ingredients (APIs), particularly phenylbutazone (PBZ), are contaminating water resources and posing serious risks to the food chain. PBZ is a nonsteroidal anti-inflammatory drug (NSAID) commonly used for treating pain and fever in animals, and its persistence in the environment due to inadequate waste management has become a cause of concern. To address this, we report the fabrication of benzimidazole-based self-assembled nanomicelles (R2 NMs) for selective detection and removal of PBZ.

View Article and Find Full Text PDF

Carbon fiber nanotip electrodes (CFNEs) are crucial for electrochemical recordings of neurotransmission release in confined spaces, such as synapses and intracellular measurements. However, fabricating CFNEs with small surface area to minimize noise remains challenging due to inconsistent tip size control, low reproducibility, and low fabrication success rate. Here, we present a reliable, user-friendly method with high reproducibility and success rate for precise CFNE fabrication using microscopy-guided electrochemical etching of cylindrical carbon fiber microelectrodes in a potassium hydroxide droplet.

View Article and Find Full Text PDF