Machine learning approaches for classifying major depressive disorder using biological and neuropsychological markers: A meta-analysis.

Neurosci Biobehav Rev

School of Psychology, Central China Normal University, Wuhan 430079, China; Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, Wuhan 430079, China; Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Norma

Published: July 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Traditional diagnostic methods for major depressive disorder (MDD), which rely on subjective assessments, may compromise diagnostic accuracy. In contrast, machine learning models have the potential to classify and diagnose MDD more effectively, reducing the risk of misdiagnosis associated with conventional methods. The aim of this meta-analysis is to evaluate the overall classification accuracy of machine learning models in MDD and examine the effects of machine learning algorithms, biomarkers, diagnostic comparison groups, validation procedures, and participant age on classification performance. As of September 2024, a total of 176 studies were ultimately included in the meta-analysis, encompassing a total of 60,926 participants. A random-effects model was applied to analyze the extracted data, resulting in an overall classification accuracy of 0.825 (95 % CI [0.810; 0.839]). Convolutional neural networks significantly outperformed support vector machines (SVM) when using electroencephalography and magnetoencephalography data. Additionally, SVM demonstrated significantly better performance with functional magnetic resonance imaging data compared to graph neural networks and gaussian process classification. The sample size was negatively correlated to classification accuracy. Furthermore, evidence of publication bias was also detected. Therefore, while this study indicates that machine learning models show high accuracy in distinguishing MDD from healthy controls and other psychiatric disorders, further research is required before these findings can be generalized to large-scale clinical practice.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neubiorev.2025.106201DOI Listing

Publication Analysis

Top Keywords

machine learning
20
learning models
12
classification accuracy
12
major depressive
8
depressive disorder
8
neural networks
8
machine
5
accuracy
5
classification
5
learning approaches
4

Similar Publications

Aim: The purpose of this study was to assess the accuracy of a customized deep learning model based on CNN and U-Net for detecting and segmenting the second mesiobuccal canal (MB2) of maxillary first molar teeth on cone beam computed tomography (CBCT) scans.

Methodology: CBCT scans of 37 patients were imported into 3D slicer software to crop and segment the canals of the mesiobuccal (MB) root of the maxillary first molar. The annotated data were divided into two groups: 80% for training and validation and 20% for testing.

View Article and Find Full Text PDF

Obsessive-compulsive disorder (OCD) is a chronic and disabling condition affecting approximately 3.5% of the global population, with diagnosis on average delayed by 7.1 years or often confounded with other psychiatric disorders.

View Article and Find Full Text PDF

Early prediction of orthodontic gingival enlargement using S100A4: a biomarker-based risk stratification model.

Odontology

September 2025

Department of Periodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India.

Orthodontic-induced gingival enlargement (OIGE) affects approximately 15-30% of patients undergoing orthodontic treatment and remains largely unpredictable, often relying on subjective clinical assessments made after irreversible tissue changes have occurred. S100A4 is a well-characterized marker of activated fibroblasts involved in pathological tissue remodeling. This was a cross-sectional precision biomarker study that analyzed gingival tissue samples from three groups: healthy controls (n = 60), orthodontic patients without gingival enlargement (n = 31), and patients with clinically diagnosed OIGE (n = 61).

View Article and Find Full Text PDF

Purpose: The study aims to compare the treatment recommendations generated by four leading large language models (LLMs) with those from 21 sarcoma centers' multidisciplinary tumor boards (MTBs) of the sarcoma ring trial in managing complex soft tissue sarcoma (STS) cases.

Methods: We simulated STS-MTBs using four LLMs-Llama 3.2-vison: 90b, Claude 3.

View Article and Find Full Text PDF