A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Compact design, construction, and evaluation of an in situ ±90° rotatable magnetic force microscope in a 12 T superconducting magnet. | LitMetric

Compact design, construction, and evaluation of an in situ ±90° rotatable magnetic force microscope in a 12 T superconducting magnet.

Ultramicroscopy

University of Science and Technology of China, Hefei 230026, China; Anhui Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, China; High Magnetic Field Laboratory of Anhui Province, Hefei 230031, China; Anhui

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cryogenic magnetic force microscopy (MFM) is a powerful technique capable of resolving exotic magnetic textures with nanoscale resolution in real-space. We introduce a cryogenic rotatable MFM (CRMFM) that enables the visualization of in situ evolution of magnetic domains by rotating magnetic samples between -90° and +90° within a 12 T superconducting magnet. By continuously rotating the sample under an external magnetic field, the direction of the magnetic field can be varied from out-of-plane to in-plane, enabling microscopic analysis experiments that require vector magnetic fields within the CRMFM system. By using CRMFM measurements, we successfully transformed long magnetic stripe domains into isolated magnetic bubble domains and proposed a novel strategy for visualizing stripe-bubble transitions in magnetic domains. Additionally, we demonstrated that the CRMFM system can generate high-quality MFM images under in-plane magnetic fields up to 12 T. Our research provides a framework for visualizing the interaction between ferromagnetism and magnetic field direction, facilitating the study of magnetic crystal anisotropy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultramic.2025.114155DOI Listing

Publication Analysis

Top Keywords

magnetic
14
magnetic field
12
magnetic force
8
superconducting magnet
8
magnetic domains
8
field direction
8
magnetic fields
8
crmfm system
8
compact design
4
design construction
4

Similar Publications