98%
921
2 minutes
20
Background: Mental health conditions, particularly depression and anxiety, are highly prevalent and impose substantial health burdens globally. Despite advancements in machine learning, there is limited application of these methods in predicting common mental illnesses within community populations in low-resource settings.
Aims: This study aims to examine the prevalence and associated risk factors of common mental illnesses collectively (depression and anxiety) in a rural Bangladeshi community using machine learning models.
Method: This cross-sectional study surveyed 490 adults aged 18-59 in a rural Bangladeshi community. Depression and anxiety were assessed using the Patient Health Questionnaire (PHQ-2) and Generalised Anxiety Disorder (GAD-2) scales. Machine learning models, including Categorical Boosting, the support vector machine, the random forest and XGBoost (eXtreme Gradient Boosting), were trained on 80% of the data-set and tested on 20% to evaluate predictive accuracy, precision, F1 score, log-loss and area under the receiver operating characteristic curve (AUC-ROC).
Results: Some 20.4% of participants experienced at least one common mental illness. Feature importance analysis identified house type, age group and educational status as the most significant predictors. SHAP (Shapley Additive exPlanations) values highlighted their influence on model outputs, and the XGBoost gain metric confirmed the importance of marital status and house type, with gains of 0.76 and 0.73, respectively. XGBoost delivered the best performance, achieving an F1 score of 71.01%, precision of 71.58%, accuracy of 71.15% and the lowest log-loss value of 0.56. The random forest had an accuracy of 78.21% and an AUC-ROC of 0.90.
Conclusions: The findings of this study suggest targeted interventions addressing housing and social determinants could improve mental health outcomes in similar rural settings. Further studies should consider longitudinal data to explore causal relationships.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12089814 | PMC |
http://dx.doi.org/10.1192/bjo.2025.47 | DOI Listing |
Bull Entomol Res
September 2025
Instituto de Biotecnología y Ecología Aplicada, Universidad Veracruzana, Xalapa, Veracruz, México.
Insect pupae change morphologically (e.g., pigmentation of eyes, wings, setae and legs) during the intrapuparial period.
View Article and Find Full Text PDFEnviron Sci Technol
September 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
While the cancer genome is well-studied, the nongenetic exposome of cancer remains elusive, particularly for regionally prevalent cancers with poor prognosis. Here, by employing a combined knowledge- and data-driven strategy, we profile the chemical exposome of plasma from 53 healthy controls, 14 esophagitis and 101 esophageal squamous cell carcinoma (ESCC) patients, and 46 esophageal tissues across 12 Chinese provinces, integrating inorganic, endogenous, and exogenous chemicals. We first show that components of the ESCC chemical exposome mediate the relationship between ESCC-related dietary/lifestyle factors and clinic health status indicators.
View Article and Find Full Text PDFJAMA Netw Open
September 2025
Department of Social Epidemiology, Graduate School of Medicine and School of Public Health, Kyoto University, Kyoto, Japan.
Importance: Previous studies have suggested that social participation helps prevent depression among older adults. However, evidence is lacking about whether the preventive benefits vary among individuals and who would benefit most.
Objective: To examine the sociodemographic, behavioral, and health-related heterogeneity in the association between social participation and depressive symptoms among older adults and to identify the individual characteristics among older adults expected to benefit the most from social participation.
Nutr Health
September 2025
Independent researcher, Rome, Italy.
Artificial intelligence (AI) is increasingly applied in nutrition science to support clinical decision-making, prevent diet-related diseases such as obesity and type 2 diabetes, and improve nutrition care in both preventive and therapeutic settings. By analyzing diverse datasets, AI systems can support highly individualized nutritional guidance. We focus on machine learning applications and image recognition tools for dietary assessment and meal planning, highlighting their potential to enhance patient engagement and adherence through mobile apps and real-time feedback.
View Article and Find Full Text PDFMed Biol Eng Comput
September 2025
Department of Computer Science, Università degli Studi di Bari Aldo Moro, Bari, Italy.
Fetal standard plane detection is essential in prenatal care, enabling accurate assessment of fetal development and early identification of potential anomalies. Despite significant advancements in machine learning (ML) in this domain, its integration into clinical workflows remains limited-primarily due to the lack of standardized, end-to-end operational frameworks. To address this gap, we introduce FetalMLOps, the first comprehensive MLOps framework specifically designed for fetal ultrasound imaging.
View Article and Find Full Text PDF