Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Semantic segmentation algorithms are essential for identifying and segmenting human organs and lesions in medical images. However, as U-Net variants enhance segmentation accuracy, they often increase in parameter count, demanding more sophisticated and costly hardware for training.

Objective: This study aims to introduce a lightweight U-Net that optimizes the trade-off between network parameters and segmentation accuracy, while fully leveraging the encoder's feature extraction capabilities.

Methods: We propose a lightweight full-encoder U-shaped network, termed LFE-UNet, which employs full-encoder skip connections, encompassing all encoder layers. This model is designed with a reduced number of basic channels-specifically, 8 instead of the typical 64 or 32-to achieve a more efficient architecture.

Results: The LFE-UNet, when integrated with ResNet34, achieved a Dice score of 0.97385 on the ISBI LiTS 2017 liver dataset. For the BraTS 2018 brain tumor dataset, it obtained 0.87510, 0.93759, 0.87301, and 0.81469 on average, WT, TC, and ET, respectively. The paper also discusses the impact of varying basic channel numbers n and encoder layer counts N on the network's parameter efficiency, as well as the model's robustness to different levels of Gaussian noise in images and salt and pepper noise in labels. Additionally, the influence of different loss functions is explored.

Conclusion: The LFE-UNet proves that high segmentation accuracy can be attained with a markedly lower parameters, fully utilizing the full-scale encoder's feature extraction. It also highlights the significance of loss function selection and the effects of noise on segmentation accuracy.

Download full-text PDF

Source
http://dx.doi.org/10.2174/0115734056370555250426140155DOI Listing

Publication Analysis

Top Keywords

segmentation accuracy
16
lightweight full-encoder
8
full-encoder u-shaped
8
u-shaped network
8
semantic segmentation
8
encoder's feature
8
feature extraction
8
segmentation
6
lfe-unet
4
lfe-unet lightweight
4

Similar Publications

Genomes are composed of a mosaic of segments inherited from different ancestors, each separated by past recombination events. Consequently, genealogical relationships among multiple genomes vary spatially across different genomic regions. Genealogical variation among unlinked (uncorrelated) genomic regions is well described for either a single population (coalescent) or multiple structured populations (multispecies coalescent).

View Article and Find Full Text PDF

Purpose: To compare postoperative vault measurements between horizontal and vertical fixation of the Implantable Collamer Lens (ICL) (KS-AquaPORT; STAAR Surgical) when its size is determined using the KS formula.

Methods: This retrospective study analyzed 2,343 eyes from 1,275 patients who underwent myopic ICL implantation. Pre-operative anterior segment optical coherence tomography (AS-OCT) (CASIA 2; Tomey Corporation) was performed in both horizontal and vertical orientations.

View Article and Find Full Text PDF

Background: With the increasing incidence of skin cancer, the workload for pathologists has surged. The diagnosis of skin samples, especially for complex lesions such as malignant melanomas and melanocytic lesions, has shown higher diagnostic variability compared to other organ samples. Consequently, artificial intelligence (AI)-based diagnostic assistance programs are increasingly needed to support dermatopathologists in achieving more consistent diagnoses.

View Article and Find Full Text PDF

Localized Gradient Conductivity Enabled Ultrasensitive Flexible Tactile Sensors with Ultrawide Linearity Range.

Adv Mater

September 2025

Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, School of Physics and Electronics, Hunan Normal University, Changsha, 410081, China.

The high sensitivity and wide linearity are crucial for flexible tactile sensors in adapting to diverse application scenarios with high accuracy and reliability. However, conventional optimization strategies of constructing microstructures suffer from the mutual restriction between the high sensitivity and wide linearity. Herein, a novel design of localized gradient conductivity (LGC) with partly covered low-conductivity (low-σ) carbon/Polydimethylsiloxane layer on high-conductivity (high-σ) silver nanowires film upon the micro-dome structure is proposed.

View Article and Find Full Text PDF

Low-coverage sequencing refers to sequencing DNA of individuals to a low depth of coverage (e.g., 0.

View Article and Find Full Text PDF