98%
921
2 minutes
20
Introduction: Prostate cancer (PCa) is one of the most commonly diagnosed can-cers in men, with a high global incidence. The Meiotic Nuclear Division 1 (MND1) protein is essential for the repair of DNA double-strand breaks during meiosis, but its role in PCa re-mains poorly understood. This study aims to explore the function of MND1 in PCa progression and the mechanism involved.
Methods: RNA-Seq data from the TCGA and GEO databases were analyzed. Kaplan-Meier (KM) method and χ2 test examined the association between MND1 expression, prognosis, and clinical parameters. PCa cell lines (22RV1 and C4-2) were used for functional assays. CCK-8, EdU, colony formation assay, flow cytometry analysis and xenograft model were used to evaluate the effects of MND1 on PCa cell proliferation in vitro and in vivo.
Results: MND1 expression was significantly upregulated in PCa tissues, particularly in cases with Gleason scores ≥8, and correlated with poorer disease-free survival (DFS) and adverse clinical features. Functionally, elevated MND1 expression promoted PCa cell proliferation both in vitro and in vivo. Mechanistically, MND1 facilitated cell cycle progression from G0/G1 to S phase via activation of the CCNB1/p53 signaling pathway.
Conclusion: MND1 promotes prostate cancer progression by facilitating the G0/G1 to S phase transition via the CCNB1/p53 pathway, making it a promising prognostic marker and potential therapeutic target.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/0115680096391591250506064859 | DOI Listing |
JCO Clin Cancer Inform
September 2025
USC Institute of Urology and Catherine and Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA.
Purpose: To evaluate a generative artificial intelligence (GAI) framework for creating readable lay abstracts and summaries (LASs) of urologic oncology research, while maintaining accuracy, completeness, and clarity, for the purpose of assessing their comprehension and perception among patients and caregivers.
Methods: Forty original abstracts (OAs) on prostate, bladder, kidney, and testis cancers from leading journals were selected. LASs were generated using a free GAI tool, with three versions per abstract for consistency.
JCO Precis Oncol
September 2025
Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA.
Clin Nucl Med
September 2025
Department of Radiology and Nuclear Medicine, Comprehensive Cancer Care and Research Center (SQCCCRC), University Medical City, Muscat, Oman.
PSMA-targeted radioligand therapies with 177Lu-PSMA-617 have shown promising response rates with favorable toxicity in patients with metastasized castration-resistant prostate cancer. We report a case of a 72-year-old man with metastatic castration-resistant prostate cancer having comorbidities of DM, HTN, and end-stage renal disease (ESRD) on regular hemodialysis. The patient received 2 doses of 7.
View Article and Find Full Text PDFJ Med Chem
September 2025
State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
Resistance-conferring mutations in the androgen receptor (AR) ligand-binding pocket (LBP) compromise the effectiveness of clinically approved orthosteric AR antagonists. Targeting the dimerization interface pocket (DIP) of AR presents a promising therapeutic approach. In this study, we report the design and optimization of -(thiazol-2-yl) furanamide derivatives as novel AR DIP antagonists, among which was the most promising candidate.
View Article and Find Full Text PDFJAMA
September 2025
Division of Surgery and Interventional Science, UCL, London, United Kingdom.
Importance: Multiparametric magnetic resonance imaging (MRI), with or without prostate biopsy, has become the standard of care for diagnosing clinically significant prostate cancer. Resource capacity limits widespread adoption. Biparametric MRI, which omits the gadolinium contrast sequence, is a shorter and cheaper alternative offering time-saving capacity gains for health systems globally.
View Article and Find Full Text PDF