98%
921
2 minutes
20
Carbon interlayers have been implemented in "anode-free" solid-state batteries to improve the uniformity and reversibility of lithium deposition by controlling the location of Li plating. However, there remains a lack of fundamental understanding of the detailed role of how these interlayers function during in situ Li formation. In this study, the relationships between the interfacial adhesion of the carbon interlayer to the solid electrolyte and the location of Li plating are investigated. By varying the lamination pressure used during manufacturing, the ability to systematically tune the resulting interfacial adhesion is demonstrated. Mechanical peel tests are performed, and a 4-fold increase in interfacial toughness is measured as the lamination pressure increases from 100 to 400 MPa. Post-mortem electron microscopy revealed that the location of Li plating with respect to the carbon interlayer transitions from the interface with the solid electrolyte to the current collector above a threshold interfacial toughness, which is consistent when the interlayer material is changed from amorphous to hard carbon. These findings highlight the role of electro-chemo-mechanical relationships in systematically controlling Li deposition in solid-state batteries when interlayers are present.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12288772 | PMC |
http://dx.doi.org/10.1002/adma.202502114 | DOI Listing |
Int J Biol Macromol
September 2025
Research Center of Advanced Catalytic Materials & Functional Molecular Synthesis, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, School of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing, 312000, China; Institute of Chemistry, Chinese Academy of Scien
Inspired by "the composition of catechol and amine groups in the adhesive proteins" of marine mussel and "brick-and-mortar" structure of nacre, we use polydopamine (PDA) as "mortar", graphene oxides (GO) nanosheets as "brick", and Pd ions as interfacial reinforcer, to fabricate nacre-like Pd enhanced PDA functionalized GO membranes (Pd@PDA/GO) with vacuum filtration-assisted assembly method. Meanwhile, in situ reduced Pd nanoclusters by PDA chains were well constrained within the resultant Pd@PDA/GO artificial nacre composites. Good interfacial adhesion with dense packing of the GO nanosheets was further confirmed with sub-nano level microstructure characterization by positron annihilation lifetime spectroscopy.
View Article and Find Full Text PDFSmall
September 2025
College of Science, Nanjing Forestry University, Nanjing, 210037, China.
Inspired by the rigid exoskeleton and elastic inner tissues of crustaceans, a bilayer gel integrating high-strength rigidity and soft cushioning with high interfacial adhesion (1060 ± 40 J m ) is developed via a stepwise solid-liquid phase crosslinking strategy. Herein, a prefrozen high-concentration polyvinyl alcohol (PVA) solution forms a solid-state structural framework, while a subsequently cast low-concentration PVA solution generates a flexible layer. Partial thawing of the frozen gel during casting triggers molecular chain interpenetration at the interface, synergistically enhanced by controlled molecular penetration, freeze-thaw cycles, and salt-induced crystallization.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712.
Many soft, tough materials have emerged in recent years, paving the way for advances in wearable electronics, soft robotics, and flexible displays. However, understanding the interfacial fracture behavior of these materials remains a significant challenge, owing to the difficulty of quantifying the respective contributions from viscoelasticity and damage to energy dissipation ahead of cracks. This work aims to address this challenge by labeling a series of polymer networks with fluorogenic mechanophores, subjecting them to T-peel tests at various rates and temperatures, and quantifying their force-induced damage using a confocal microscope.
View Article and Find Full Text PDFNanoscale
September 2025
School of Mechanical Engineering, Shandong University of Technology, Zibo 255000, China.
Metal matrix composites are widely employed in aerospace and marine engineering due to their excellent mechanical properties and chemical stability. However, their surfaces remain vulnerable to corrosion, icing, and mechanical wear, severely compromising long-term reliability in harsh environments. Inspired by natural superhydrophobic surfaces such as lotus leaves, functional interfaces with high water repellency and interfacial stability can be engineered through the synergistic design of hierarchical micro/nanostructures and low-surface-energy chemical modifications.
View Article and Find Full Text PDFRSC Adv
August 2025
State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
Cycloaliphatic epoxy resin (CEP) is a promising candidate for rigid housings in high-voltage composite insulators due to its superior hardness, water resistance, and interfacial adhesion compared with conventional high-temperature vulcanized silicone rubber (HTV-SR). However, the long-term insulation degradation mechanisms of CEP under corona discharge are still not fully understood. In this study, CEP, HTV-SR, and glass fiber-reinforced epoxy (GFRP) were subjected to AC corona aging using a multi-needle plate electrode.
View Article and Find Full Text PDF