98%
921
2 minutes
20
Voltage-gated sodium channel 1.8 (Na1.8) is a promising analgesic target due to its unique biophysical characteristics and specific role in nociceptive sensation. VX-150 initially completed proof-of-concept studies in clinical trials, but with high dosages and frequent administration. Herein, based on VX-150, we report the design, synthesis and structure-activity relationship (SAR) study aiming to identify novel, potent and selective Na1.8 inhibitors with improved pharmacokinetic properties. Conformational restriction strategy and subsequent optimization led to the identification of the chroman derivative (R)-40 as the most promising hNa1.8 inhibitor showing an IC value of 5.9 ± 1.0 nM and good selectivity over other tested Na channels and hERG channel. More importantly, (R)-40 showed good in vitro metabolic stability in liver microsomes across multiple species and excellent in vivo PK profiles in rats and dogs. Notably, (R)-40 exerted dose-dependent analgesic activities in both rat models with postoperative and inflammatory pain, and a wide safety margin in neurotoxicity evaluation. Overall, these results confirmed conformational restriction as an effective strategy to improve PK profile, and our detailed study provided a valuable foundation for developing novel Na1.8 inhibitors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2025.117697 | DOI Listing |
J Colloid Interface Sci
September 2025
State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China. Electronic address:
Polyimide (PI) faces significant challenges in highly integrated and high-frequency electronic devices due to its inherently low thermal conductivity and relatively high dielectric constant (D). In this study, topologically micro-crosslinked PI films were synthesized by incorporating highly conjugated multi-amino polydiacetylene (MAPDA) into a fluorinated PI matrix. The unique alkene-alkyne alternating conjugated structure of MAPDA, combined with the strong electron-withdrawing trifluoromethyl groups in the matrix, promotes charge redistribution and reduces the dipole moment and polarizability.
View Article and Find Full Text PDFElife
September 2025
Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, United States.
The microglial surface protein Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) plays a critical role in mediating brain homeostasis and inflammatory responses in Alzheimer's disease (AD). The soluble form of TREM2 (sTREM2) exhibits neuroprotective effects in AD, though the underlying mechanisms remain elusive. Moreover, differences in ligand binding between TREM2 and sTREM2, which have major implications for their roles in AD pathology, remain unexplained.
View Article and Find Full Text PDFStructure
September 2025
Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar (Mohali), Punjab, India. Electronic address:
The structural maintenance of chromosomes (SMC)-family Wadjet complex restricts plasmid transformation in bacteria through a distinctive mechanism coupling DNA loop extrusion and cleavage. In this issue of Structure, Roisné-Hamelin et al. report the biochemical reconstitution and structure of a type II Wadjet complex, revealing a shared overall mechanism and notable architectural differences compared to related type I complexes.
View Article and Find Full Text PDFTriggering receptor expressed on myeloid cells 2 (TREM2) dysfunction contributes to Alzheimer's disease pathogenesis, yet current therapeutics cannot prevent ADAM-mediated receptor shedding that diminishes signaling efficacy. Using Affinity Selection-Mass Spectrometry (AS-MS) screening, we identified As48, a novel small molecule that binds TREM2 with high affinity. Biophysical validation confirmed s 7-fold selectivity over TREM1.
View Article and Find Full Text PDFAdv Mater
September 2025
Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
Glucose consumption by tumors induces metabolic restriction of T cells, which results in immune evasion and tumor progression. Regulating cellular metabolism represents a promising strategy to enhance cancer immunotherapy; however, redirecting glucose utilization from tumor cells to T cells is challenging. Herein, the activation of cytotoxic T cells using engineered peptide coacervates (PCs) containing interferon alpha (IFNα) and membranized with metal-phenolic networks (MPNs) (PC-IFNα@MPNs), which promote glucose uptake and glycolysis, is reported.
View Article and Find Full Text PDF