Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study systematically investigates the influence of ion size on the structure and stability of complexes formed between the calix[4]arene crown ether 1,3-alt-25,27-bis(3,7- dimethyloctyl-1-oxy)calix[4]arenebenzocrown-6 (MAXCalix) and mono- and divalent ions from the alkali and alkaline earth metal series. NMR spectroscopy studies revealed that while MAXCalix efficiently coordinates large ions such as Cs, it also forms complexes with smaller ions like Na, highlighting the ligand's versatility. The size of the ion directly influences the complex structure, with two distinct structural subtypes identified via NMR and DFT calculations. In addition, π-interactions between the cation and the cation-facing benzene rings of the calix[4]arene backbone play an important role in stabilizing the complex. Larger ions like Cs benefit from π-interactions with both cation-facing rings, whereas smaller ions like K interact with only one ring, if any. These π-interactions are primarily drivers of the enhanced affinity for Cs and the resulting higher complex stability. Competitive NMR studies further confirmed that the complex stability increases with increasing ionic radius, and ions of similar size show comparable stability of their complexes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12271986PMC
http://dx.doi.org/10.1002/chem.202501065DOI Listing

Publication Analysis

Top Keywords

ion size
8
calix[4]arene crown
8
crown ether
8
stability complexes
8
smaller ions
8
complex stability
8
ions
6
role ion
4
size
4
size π-interaction
4

Similar Publications

Aqueous zinc-ion batteries (AZIBs) represent an environmentally benign energy storage alternative. However, the VO cathode suffers from limited cycling stability and rate capability due to structural instability, vanadium dissolution, and high desolvation energy caused by the large size of [Zn(HO)] deintercalation. Address these issues, we introduce a VO/VOPO (VOP) heterostructure that that reinforces the crystal structure to suppress vanadium dissolution and establishes a hydrophilic interface reducing the desolvation energy of Zn.

View Article and Find Full Text PDF

Emulsion formation presents a significant operational challenge in oil production, necessitating the continuous development of novel and effective demulsification methods. However, the lack of a fundamental understanding of the mechanisms that regulate the formation of these emulsions significantly complicates this process. In this study, we systematically investigated the influence of Ca ions on crude oil emulsions.

View Article and Find Full Text PDF

Mechanisms of Enhanced Efficiency and Stability in Perovskite Luminescence via Rb Interstitial Doping.

J Phys Chem Lett

September 2025

Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, P.R. China.

Metal halide perovskites have garnered significant attention due to their exceptional photoelectric properties. The alkali metal doping strategy has been demonstrated to effectively modulate grain size, control crystallization kinetics, and adjust band gap characteristics in perovskite. This study employs the first-principles calculations to reveal that the selection of alkali metal species and their corresponding doping methodologies exert markedly distinct influences on both the electronic properties and ion migration kinetics of CsPbBr perovskites.

View Article and Find Full Text PDF

Sodium-ion batteries are promising candidates for large-scale energy storage due to their low cost and resource abundance. However, their cathode materials suffer from poor conductivity and limited cycling stability. Here, we report a Prussian blue (PB)-based cathode hybridized with carboxyl-functionalized carbon nanotubes (CNTs) via a glutamic acid-assisted in situ coordination route.

View Article and Find Full Text PDF

Recent Progress in Peptide-Based Fluorescent Probes Biomedical Applications: A Review.

Int J Nanomedicine

September 2025

Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China.

Peptide-based fluorescent probes have found widespread applications in biomedical research, including bio-imaging, disease diagnosis, drug discovery, and image-guided surgery. Their favorable properties-such as small molecular size, low toxicity, minimal immunogenicity, and high targeting specificity-have contributed to their growing utility in both basic research and translational medicine. This review provides a comprehensive overview of recent advances in peptide-based fluorescent probes, emphasizing design strategies, biological targets, and diverse functional applications.

View Article and Find Full Text PDF