98%
921
2 minutes
20
Females demonstrate elevated type-I interferon production and a stronger antiviral immune response; however, the mechanisms underlying sex-based differences in antiviral immunity are incompletely understood. We previously reported that low adenosine deaminase (ADA) activity perturbs the methylation-based transcriptional silencing of endogenous retroviral elements (hERV), which stimulates IFN-Stimulated Genes (ISG) and primes antiviral immunity. Here we demonstrate lower ADA activity in females compared to their male counterparts, which correlated with higher hERV and ISG expression in female lungs. Sex differences in ADA2 were linked to the number and expression profiles of blood and lung-derived monocyte populations. Single-cell RNA sequencing of respiratory cells from patients with COVID-19 showed a significant female bias in hERV-ISG signatures, and implicated IL-18 as a driver of sex-specific ADA2 expression. Observations in healthy and COVID-19 cohorts indicate that higher ADA activity is associated with suppressed antiviral innate immunity in the male respiratory tract, which may drive adverse COVID-19 outcomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12059719 | PMC |
http://dx.doi.org/10.1016/j.isci.2025.112418 | DOI Listing |
Diabetologia
September 2025
Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark.
Aims/hypothesis: Alpha cell dysregulation is an integral part of type 2 diabetes pathophysiology, increasing fasting as well as postprandial glucose concentrations. Alpha cell dysregulation occurs in tandem with the development of insulin resistance and changes in beta cell function. Our aim was to investigate, using mathematical modelling, the role of alpha cell dysregulation in beta cell compensatory insulin secretion and subsequent failure in the progression from normoglycaemia to type 2 diabetes defined by ADA criteria.
View Article and Find Full Text PDFDiabetologia
September 2025
Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA.
Aims/hypothesis: CIDEB (cell death-inducing DFF45-like effector B) deficiency is associated with a reduced incidence of metabolic dysfunction-associated steatotic liver disease (MASLD) in humans; however, the underlying mechanism responsible for this protective effect remains unclear.
Methods: C57BL/6J male mice were fed a high-fat diet (HFD) to recapitulate key aspects of MASLD and hepatic insulin resistance. Cideb knockdown (KD) was achieved using a 2'-O-methoxyethyl (MOE) antisense oligonucleotide (ASO).
Front Immunol
September 2025
International Center for Aging and Cancer (ICAC), Hainan Medical University, Haikou, China.
Introduction: Adenosine deaminases ADA1 and ADA2 reduce adenosine concentrations, which regulate cellular immune responses to activation signals. It has been shown that ADA2 activity increases in the pleural fluid of patients with tuberculosis (TB).
Methods: We engineered recombinant scFv-AP antibodies using phage display technology to select high-affinity binders against ADA2.
New Microbes New Infect
October 2025
Division of Infectious Disease, Brigham and Women's Hospital, Boston, MA, USA.
Background: Immunocompromised individuals have a limited humoral immune response to SARS-CoV-2 vaccination and are at higher risk of severe COVID-19. Sotrovimab is a monoclonal antibody (mAb) targeting a conserved SARS-CoV-2 spike protein epitope.
Methods: This phase II open-label study evaluated the safety and tolerability of sotrovimab pre-exposure prophylaxis in immunocompromised adults with impaired vaccine response.
Pain
September 2025
Division of Neurophysiology, Center for Brain Research, Medical University of Vienna, Wien, Austria.
Astrocytes are key players in chronic pain, driving maladaptive changes in neuronal circuits. Yet, their influence on acute nociception-the body's first line of defense against harmful stimuli-remains poorly understood. Using chemogenetic tools to mimic endogenous astrocytic G-protein-coupled receptor-mediated signaling, we reveal that astrocytes induce bidirectional plasticity at nociceptive synapses in the dorsal horn.
View Article and Find Full Text PDF