Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The ever-increasing demand for sustainable solutions for eliminating environmental pollutants, solar energy harvesting, water splitting, . have led to the design and development of novel materials to achieve the desired result. In this regard, structurally and electronically integrated (SEI) BiVO-TiO (SEI-BVT) with abundant heterojunctions has emerged as a promising entity for efficient charge separation, which in turn enhances artificial photosynthesis (APS) activity. The present work adopted a unique synthetic strategy using SILAR to fabricate SEI-BVT from ionic precursors (Bi and VO) into the pores of TiO, exhibiting benchmark APS efficiency compared to the individual components. This preparation results in approximately 180 trillion uniformly distributed heterojunctions in 1 mg cm of the SEI-BVT photoanode material. Charge carriers in SEI-BVT and BiVO are similar; however, the recombination is highly hindered when SEI-BVT heterojunctions are formed in the former. Our earlier work demonstrated 31-38% solar-to-fuel efficiency (STFE) with BiVO-TiO for APS in the presence of the Pd-nanocube co-catalyst. The emphasis of the current work is to explore the dynamics of the light-induced processes in these heterojunctions to understand the interfacial charge transfer process. Femtosecond transient absorption (TA) spectroscopy has been employed to monitor the excited state dynamics. Our results show that new trap states have evolved under light illumination, which are significantly long-lived and hinder charge recombination, and consequently enhance STFE. A significantly large number of charge carriers exhibit a lifetime of ≫6 ns with visible light photons, at least up to 720 nm, which is higher than the band-gap absorption onset at 490 nm for SEI-BVT compared to bulk BiVO. The rate of formation of charge carriers is significantly affected in the heterojunctions.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d5nr00723bDOI Listing

Publication Analysis

Top Keywords

charge carriers
16
artificial photosynthesis
8
charge
7
sei-bvt
6
heterojunctions
5
enhanced mid-visible
4
mid-visible light
4
light absorption
4
absorption long-lived
4
long-lived charge
4

Similar Publications

On Refining Exciton Dissociation and Charge Transport of Nonfullerene Organic Photovoltaics: from Star-Shaped Acceptors to Molecular Doping.

Adv Mater

September 2025

College of Smart Materials and Future Energy, and State Key Laboratory of Photovoltaic Science and Technology, Fudan University, Shanghai, 200438, China.

Nonfullerene acceptor-based organic solar cells have recently taken a milestone leap with power conversion efficiencies approaching 20%. A key to further boost the efficiencies up to the Shockley-Queisser limit rests upon attaining a delicate balance between exciton dissociation and charge transport. This perspective presents two seminal and reciprocal strategies developed by our group and others to reconcile the intricacy of charge carrier dynamics, spanning from intrinsic molecular structure design to extrinsic dopant exploitation.

View Article and Find Full Text PDF

Interface Engineering Based on Naphthyl Isomerization for High-Efficiency and Stable Perovskite Solar Cells: Theoretical Simulation and Experimental Research.

Small

September 2025

Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China.

Perovskites have a large number of intrinsic defects and interface defects, which often lead to non-radiative recombination, and thus affect the efficiency of perovskite solar cells (PSCs). Introducing appropriate passivators between the perovskite layer and the transport layer for defect modification is crucial for improving the performance of PSCs. Herein, two positional isomers, 1-naphthylmethylammonium iodide (NMAI) and 2-naphthylmethylammonium iodide (NYAI) are designed.

View Article and Find Full Text PDF

Electric Field Influences on the Carrier Transport Characteristics of an Individual CsPbBr Microplate.

ACS Appl Mater Interfaces

September 2025

National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.

For optoelectronic devices based on lead-halide perovskites and other semiconductors, a comprehensive understanding of the electric field influences on the carrier transport characteristics is critical to the optimization of their practical performances. To fulfill this challenging goal, here we have employed photoluminescence spatial image and transient absorption microscopy measurements on an individual CsPbBr microplate biased at external voltages in an Au/CsPbBr/Au device. At the subpicosecond time scale, some photogenerated excitons are dissociated into free electrons and holes that drift toward the electrodes to leave behind unfilled defect sites, which are capable of scattering the residual excitons to yield a reduced diffusion coefficient.

View Article and Find Full Text PDF

Organic mixed ionic-electronic conducting polymers remain at the forefront of materials development for bioelectronic device applications. During electrochemical operation, structural dynamics and variations in electrostatic interactions in the polymer occur, which affect dual transport of the ions and electronic charge carriers. Such effects remain unclear due to a lack of spectroscopic methods capable of capturing these dynamics, which hinders the rational design of higher-performance polymers.

View Article and Find Full Text PDF

Densification-Related Optical and Photodetection Properties of Green-Synthesized MAPbI and MAPbI@Graphite Powders.

ACS Omega

September 2025

Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), UMR-7515 CNRS-Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France.

For photodetection applications using 3D hybrid perovskites (HPs), dense and thick films or compacted powders in wafer form are needed and generally require large amounts of HPs. HPs are also often combined with a graphene/carbon layer to improve their conductivity. Among HP synthesis methods, mechanosynthesis, a green synthesis method, provides a large amount of powders, which are furthermore easily densified in compact wafers due to their mechanical activation.

View Article and Find Full Text PDF