98%
921
2 minutes
20
G-quadruplex (G4) structures have emerged as critical regulatory elements in viral genomes and represent potential targets for antiviral intervention. In this study, we identified and characterized G4 structures in the unique long (UL) region of the Pseudorabies virus (PRV) genome, highlighting their role as novel antiviral targets. Bioinformatic analysis revealed two guanine-rich regions (R1 and R2) that form stable G4 structures, as confirmed by fluorescence assays, circular dichroism (CD) spectroscopy, and immunofluorescence staining. Notably, these G4 structures exhibit a tandem repeat arrangement, a previously unreported feature in the PRV genome. Epiberberine (EPI), a natural G4-stabilizing ligand, bound to and stabilized these structures, leading to the inhibition of Taq polymerase progression. Functional assays demonstrated that EPI effectively suppressed PRV replication in vitro while having no significant impact on viral entry or release. In vivo, EPI treatment significantly improved survival rates and reduced viral loads in multiple organs, including the brain, heart, lungs, and kidneys of infected mice. These findings provide new insights into the role of G4 structures in PRV replication and demonstrate that EPI exhibits potential antiviral activity by targeting G4 structures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12028228 | PMC |
http://dx.doi.org/10.3390/ijms26083764 | DOI Listing |
Nurs Crit Care
September 2025
School of Nursing and Midwifery, Monash University, Frankston, Victoria, Australia.
Background: Optimal oral care is essential in preventing non-ventilator hospital-associated pneumonia and enhancing patient comfort. However, nurses' clinical oral care practices for patients not on mechanical ventilation in the intensive care unit are both underreported and understudied.
Aim: To explore intensive care nurses' clinical oral care practices for patients not on mechanical ventilation in intensive care units.
Environ Sci Process Impacts
September 2025
Aix Marseille Univ., CNRS, LCE, Marseille, France.
Surfactant-rich aqueous media are common in natural environments. The sea surface microlayer and sea spray droplets are good examples and are also frequently markedly enriched in organic pollutants. This study focuses on the degradation kinetics of organic pollutants initiated by the hydroxyl radical in such surfactant-rich environments.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, State Key Laboratory of Advanced Materials for Intelligent Sensing, Tianjin University, Tianjin, 300072, China.
Organic electrode materials have garnered great attention in recent years, owing to their resource sustainability, structural diversity, and superior compatibility with various ionic species. Among them, quinone-based compounds have attracted particular interest. Notably, compared with para-quinone analogs (e.
View Article and Find Full Text PDFOrg Lett
September 2025
Department of Chemistry, Indian Institute of Techology Bombay, Powai, Mumbai 400076, India.
The direct α-α coupling of 3-pyrrolyl boron dipyrromethenes (BODIPYs) affords helical near-infrared (NIR)-active dimers in one step via a radical Pd-catalyzed process. X-ray analysis reveals Z-type helical packing stabilized by π-π stacking and hydrogen-bonding interactions. These dimers showed pronounced bathochromic absorption shifts compared to monomers and solvent-dependent charge-transfer bands up to 905 nm with fluorescence quenching.
View Article and Find Full Text PDFNano Lett
September 2025
School of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China.
Passivating detrimental defects is essential for improving perovskite solar cells (PSCs) performance. While hydrogen interstitials are often considered harmful, their role in defect passivation remains unclear. Using nonadiabatic molecular dynamics, we uncover a self-passivation mechanism between hydrogen (H) and bromine (Br) interstitials in all-inorganic CsPbBr perovskites.
View Article and Find Full Text PDF