98%
921
2 minutes
20
Second near-infrared (NIR-II) fluorescence imaging holds great promise for studying biopathological processes with high spatial resolution. However, developing activatable NIR-II fluorescent probes (AFPs) remains challenging due to insufficient signal activation in response to biomarkers and labor-intensive probe optimization. Here, we identify the excited-state charge transfer dynamics change ratios (δ) as a critical determinant of the fluorescence "turn-on" ratio of AFPs. We design a series of AFPs and their uncaged counterparts (uAFPs) and systematically analyze their photophysical characteristics and responsiveness. Comprehensive analyses including computational calculations, femtosecond transient absorption spectroscopy, steady-state fluorescence spectra, and fluorescence titration experiments verify a strong correlation between the theoretical and experimental δ values and the fluorescence "turn-on" ratios of activated AFPs. As a proof of concept, the optimal probe AFP2 indicated by δ enables early diagnosis of drug-induced liver injury and ultrasensitive detection of tiny metastatic foci (<2 mm) in mouse models, demonstrating superior sensitivity outperforming conventional methods. This study highlights the potential of δ as a predictor of probe responsiveness, which can streamline and accelerate the development and optimization of NIR-II AFPs for broader preclinical and translational applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.5c03763 | DOI Listing |
Int J Sports Physiol Perform
September 2025
Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, Taiwan.
Purpose: This study explored the acute physiological effects of different eccentric tempos, explosive speed (EXP), volitional speed, and 4-second tempo during 5 sets of velocity-based squat training.
Methods: Twelve healthy males performed parallel squats under 3 eccentric conditions using a randomized crossover design. Each session included 5 sets at a relative load, initiated with a concentric mean velocity of 0.
Int J Sports Physiol Perform
September 2025
Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA.
Purpose: To assess the association between skeletal-muscle endurance performance and mitochondrial oxidative capacity of the hamstrings as respectively measured by biomechanical and physiological standards.
Methods: Nineteen (12 men and 7 women) healthy, young, recreationally active participants enrolled in our study. Participant characteristics comprised a mean and SD age of 21.
Adv Mater
September 2025
Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat de València-Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022, Spain.
Bioorthogonal chemistry that can be controlled through near-infrared (NIR) light is a promising route to therapeutics. This study proposes a method to intracellularly photoactivate prodrugs using plasmonic gold nanostars (AuNSt) and NIR irradiation. Two strategies are followed.
View Article and Find Full Text PDFNatl Sci Rev
August 2025
Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
Multimodal phototheranostics has been recognized as one of the most momentous advances in cancer treatment. Of particular interest is a single molecular species simultaneously featuring in multiple imaging and synergistic phototherapies; the development of such a molecular species is nevertheless a formidably challenging task. Herein, we innovatively designed and synthesized three aggregation-induced emission (AIE)-active molecules with emission in the second near-infrared (NIR-II) window, by employing 10-indeno[1,2-][1,2,5]thiadiazolo[3,4-]quinoxalin-10-one as the electron acceptor, 4-(-butyl)--(4-(-butyl)phenyl)--phenylaniline as the electron donor, and different π-bridge moieties.
View Article and Find Full Text PDFThe emergence of drug-resistant bacteria due to excessive antibiotic use has drawn increasing attention to inorganic nanoparticles for their broad-spectrum antibacterial properties. Here, a "green" strategy for the simultaneous in situ synthesis of silver nanoparticles (AgNPs) during the photocrosslinking process of casein hydrogels is described. The in situ photoactivated biomineralization of AgNPs provides noticeable stability and antibacterial activity, with high photothermal effect during a sequential near-infrared laser activation.
View Article and Find Full Text PDF