Tuning Second Near-Infrared Fluorescence Activation by Regulating the Excited-State Charge Transfer Dynamics Change Ratio.

J Am Chem Soc

MOE Key Laboratory of High Performance Polymer Materials & Technology and State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.

Published: May 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Second near-infrared (NIR-II) fluorescence imaging holds great promise for studying biopathological processes with high spatial resolution. However, developing activatable NIR-II fluorescent probes (AFPs) remains challenging due to insufficient signal activation in response to biomarkers and labor-intensive probe optimization. Here, we identify the excited-state charge transfer dynamics change ratios (δ) as a critical determinant of the fluorescence "turn-on" ratio of AFPs. We design a series of AFPs and their uncaged counterparts (uAFPs) and systematically analyze their photophysical characteristics and responsiveness. Comprehensive analyses including computational calculations, femtosecond transient absorption spectroscopy, steady-state fluorescence spectra, and fluorescence titration experiments verify a strong correlation between the theoretical and experimental δ values and the fluorescence "turn-on" ratios of activated AFPs. As a proof of concept, the optimal probe AFP2 indicated by δ enables early diagnosis of drug-induced liver injury and ultrasensitive detection of tiny metastatic foci (<2 mm) in mouse models, demonstrating superior sensitivity outperforming conventional methods. This study highlights the potential of δ as a predictor of probe responsiveness, which can streamline and accelerate the development and optimization of NIR-II AFPs for broader preclinical and translational applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.5c03763DOI Listing

Publication Analysis

Top Keywords

second near-infrared
8
excited-state charge
8
charge transfer
8
transfer dynamics
8
dynamics change
8
fluorescence "turn-on"
8
fluorescence
6
tuning second
4
near-infrared fluorescence
4
fluorescence activation
4

Similar Publications

Purpose: This study explored the acute physiological effects of different eccentric tempos, explosive speed (EXP), volitional speed, and 4-second tempo during 5 sets of velocity-based squat training.

Methods: Twelve healthy males performed parallel squats under 3 eccentric conditions using a randomized crossover design. Each session included 5 sets at a relative load, initiated with a concentric mean velocity of 0.

View Article and Find Full Text PDF

Purpose: To assess the association between skeletal-muscle endurance performance and mitochondrial oxidative capacity of the hamstrings as respectively measured by biomechanical and physiological standards.

Methods: Nineteen (12 men and 7 women) healthy, young, recreationally active participants enrolled in our study. Participant characteristics comprised a mean and SD age of 21.

View Article and Find Full Text PDF

Bioorthogonal chemistry that can be controlled through near-infrared (NIR) light is a promising route to therapeutics. This study proposes a method to intracellularly photoactivate prodrugs using plasmonic gold nanostars (AuNSt) and NIR irradiation. Two strategies are followed.

View Article and Find Full Text PDF

Unveiling photophysical mechanisms of NIR-II AIE luminogens for multimodal imaging-navigated synergistic therapies.

Natl Sci Rev

August 2025

Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.

Multimodal phototheranostics has been recognized as one of the most momentous advances in cancer treatment. Of particular interest is a single molecular species simultaneously featuring in multiple imaging and synergistic phototherapies; the development of such a molecular species is nevertheless a formidably challenging task. Herein, we innovatively designed and synthesized three aggregation-induced emission (AIE)-active molecules with emission in the second near-infrared (NIR-II) window, by employing 10-indeno[1,2-][1,2,5]thiadiazolo[3,4-]quinoxalin-10-one as the electron acceptor, 4-(-butyl)--(4-(-butyl)phenyl)--phenylaniline as the electron donor, and different π-bridge moieties.

View Article and Find Full Text PDF

The emergence of drug-resistant bacteria due to excessive antibiotic use has drawn increasing attention to inorganic nanoparticles for their broad-spectrum antibacterial properties. Here, a "green" strategy for the simultaneous in situ synthesis of silver nanoparticles (AgNPs) during the photocrosslinking process of casein hydrogels is described. The in situ photoactivated biomineralization of AgNPs provides noticeable stability and antibacterial activity, with high photothermal effect during a sequential near-infrared laser activation.

View Article and Find Full Text PDF