Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In the practical implementations of wearable sensors, motion artifacts with large amplitudes often cause signal chain saturation, significantly degrading biopotential signal integrity. Similarly, rapid stimulation artifacts are inevitable during closed-loop brain stimulation therapy, posing additional challenges for real-time signal acquisition. To address motion and stimulation artifacts with amplitudes reaching hundreds of mV while minimizing information loss, a sensor interface with high input range and fast artifacts recovery capability is essential. This paper presents a continuous-time track-and-zoom (CT-TAZ) technique designed to handle large artifacts events without saturation. The proposed system achieves a 3.6V/1.8V differential-mode/common-mode full-scale input range. Fabricated in a 180nm CMOS process, the prototype chip occupies an area of 0.694mm and consumes 12/32.6/51.6μW for recordings without/with single-end/ with differential rail-to-rail artifacts. The system demonstrates an average artifacts recovery time of 65.3 μs under 3.6V stimulation artifacts, achieving an average artifacts recovery speed of 52.3mV/μs, which is 2.25× larger input range and 3× faster recovery compared to the state-of-the-art.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBCAS.2025.3567524DOI Listing

Publication Analysis

Top Keywords

input range
16
stimulation artifacts
12
artifacts recovery
12
artifacts
9
sensor interface
8
average artifacts
8
recovery
5
artifact-tolerant electrophysiological
4
electrophysiological sensor
4
interface 36v/18v
4

Similar Publications

The study of electrochemical oxidations has wide-ranging implications, from the development of new electrocatalysts for fuel cells for energy conversion, to the synthesis of fine chemicals. 2,2,6,6-Tetramethylpiperidine-1-oxyl (TEMPO) has been used for decades as a sustainable, metal-free mediator for chemical oxidations and is now being used for electrochemical oxidations. We describe here a novel approach to TEMPO-mediated electrooxidations, in which the chemical input and waste generated during electrooxidations of alcohols are minimized by using a multifunctional room temperature ionic liquid (RTIL) to facilitate flow electrosynthesis.

View Article and Find Full Text PDF

Sweating is a vital thermoregulatory mechanism in humans for maintaining thermal balance during exercise and exposure to hot environments. The development of models that predict sweat rate based on body temperature has been ongoing for over half a century. Here, we compared predicted water loss rates (WLR) from these models to actual observations collected during 780 participant-exposures in three independent laboratory-based experiments.

View Article and Find Full Text PDF

We present the first dataset of collisional (de)-excitation rate coefficients of HCN induced by CO, one of the main perturbing gases in cometary atmospheres. The dataset spans the temperature range of 5-50 K. It includes both state-to-state rate coefficients involving the lowest ten and nine rotational levels of HCN and CO, respectively, and the so-called "thermalized" rate coefficients over the rotational population of CO at each kinetic temperature.

View Article and Find Full Text PDF

The thermal grill elicits central sensitization.

Pain

August 2025

Centre for Multimodal Sensorimotor and Pain Research, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.

The thermal grill, in which innocuous warm and cool stimuli are interlaced, can produce a paradoxical burning pain sensation-the thermal grill illusion (TGI). Although the mechanisms underlying TGI remain unclear, prominent theories point to spinal dorsal horn integration of innocuous thermal inputs to elicit pain. It remains unknown whether the TGI activates peripheral nociceptors, or solely thermosensitive afferents that are integrated within the spinal cord to give rise to a painful experience.

View Article and Find Full Text PDF

Controlling the Taxonomic Composition of Biological Information Storage in 16S rRNA.

ACS Synth Biol

September 2025

Department of BioSciences, Rice University, MS-140, 6100 Main Street, Houston, Texas 77005, United States.

Microbes can be programmed to record participation in gene transfer by coding biological-recording devices into mobile DNA. Upon DNA uptake, these devices transcribe a catalytic RNA (cat-RNA) that binds to conserved sequences within ribosomal RNAs (rRNAs) and perform a trans-splicing reaction that adds a barcode to the rRNAs. Existing cat-RNA designs were generated to be broad-host range, providing no control over the organisms that were barcoded.

View Article and Find Full Text PDF