Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Glycerophospholipids play important roles in iron-induced lipid peroxidation during cerebral ischemia-reperfusion, making it essential to investigate changes in their varieties and concentrations under these conditions. However, the wide range of glycerophospholipid contents, particularly the low-abundance species in actual biological samples, posed a challenge for comprehensive analysis. In this study, an iterative quadrupole time-of-flight mass spectrometry (Q-ToF-MS/MS) method was established with the aim of comprehensively detecting glycerophospholipids. This method was a data acquisition strategy implemented through iterative analyses. In each iteration, ions detected in previous runs were excluded, allowing low-abundance glycerophospholipids that were missed by the usual analysis to be extensively detected by a simplified operational process. Using this strategy, 254 glycerophospholipids including 157 PCs, 67 PEs, 19 PGs, 9 PIs, 7 PSs and 5 PAs in rat brain samples were identified after four iterations, and the number of glycerophospholipid species increased by 93.9% compared to a single assay, significantly enhancing the coverage of glycerophospholipid detection. Furthermore, the characteristic fragmentation patterns of six glycerophospholipid subclasses were systematically summarized to improve the accuracy of qualitative identification. In addition, these patterns were also used to construct an ion pair database containing 254 glycerophospholipids, enabling targeted multiple reaction monitoring (MRM) analysis under the optimized high-performance liquid chromatography-tandem triple quadrupole mass spectrometry (HPLC-QQQ-MS/MS) conditions. By comparing the changed glycerophospholipids of rat brains from the normal and cerebral ischemia-reperfusion injury groups, 29 glycerophospholipids were recognized as the potential biomarkers for cerebral ischemia-reperfusion injury, among which nine glycerophospholipids were particularly detected by four iterations. Overall, this iterative MS/MS approach extensively expanded the coverage of low-abundance components, and has been proven to be an effective approach in biomarker screening of cerebral ischemia-reperfusion injury.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-025-05884-2DOI Listing

Publication Analysis

Top Keywords

cerebral ischemia-reperfusion
20
ischemia-reperfusion injury
16
mass spectrometry
12
iterative quadrupole
8
quadrupole time-of-flight
8
time-of-flight mass
8
glycerophospholipids
8
injury glycerophospholipids
8
254 glycerophospholipids
8
cerebral
5

Similar Publications

20(R)-ginsenoside Rg3 Inhibits Neuroinflammation Induced by Cerebral Ischemia/Reperfusion Injury by Regulating the Toll-Like Receptor 4/Myeloid Differentiation Factor-88/Nuclear Factor Kappa B Signaling Pathway.

Chem Biodivers

September 2025

School of Pharmaceutical Science, Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, P. R. China.

20(R)-ginsenoside Rg3 can reduce the effects of oxidative stress and cell death in cerebral ischemia‒reperfusion injury (CIRI). Neuroinflammation is crucial post-CIRI, but how 20(R)-Rg3 affects ischemia‒reperfusion-induced neuroinflammation is unclear. To study 20(R)-Rg3's effects on neuroinflammation and neuronal preservation in stroke models and explore toll-like receptor 4/myeloid differentiation factor-88/nuclear factor kappa B (TLR4/MyD88/NF-κB) pathway mechanisms.

View Article and Find Full Text PDF

Background: Inflammatory injury in organ donors, particularly after brain death and during ischemia-reperfusion, contributes to graft dysfunction, rejection, and reduced survival. Statins, beyond their lipid-lowering role, exert pleiotropic anti-inflammatory and immunomodulatory effects, including IL-6 suppression, NF-κB inhibition, immune cell modulation, and potential alteration of exosome secretion.

Methods: Building upon this background, this narrative review synthesises preclinical and clinical evidence on pre-donation statin therapy in solid organ transplantation.

View Article and Find Full Text PDF

Acute lung injury (ALI) is a major contributor to the high morbidity and mortality associated with intestinal ischemia-reperfusion (II/R). Despite its severity, current clinical management of ALI remains limited to supportive care without addressing the cause of the disease, underscoring the urgent need to investigate the underlying mechanism and develop targeted therapies. In this study, we employed both in vitro and in vivo models to explore ALI in the setting of II/R.

View Article and Find Full Text PDF

Background: Remote ischemic conditioning (RIC), a novel neuroprotective therapy, has broad potential for reducing the occurrence and recurrence of cerebrovascular events, yet its mechanisms are not incompletely understood. The aim of this study is to investigate whether RIC alleviates apoptosis, inflammation, and reperfusion injury in rat models of ischemic stroke by regulating the Elabela (ELA)-apelin-Apelin receptor (APJ) system.

Methods: We established a rat model of middle cerebral artery occlusion (MCAO) with ischemia-reperfusion injury, and RIC was administered twice daily for 3 days post-MCAO.

View Article and Find Full Text PDF