98%
921
2 minutes
20
Recent advancements in tissue engineering have been driven by the development of nanofibrous scaffolds that replicate key structural and functional features of the natural extracellular matrix. Recently, cell membrane coating technology has emerged as a promising strategy to further enhance the biological functionality of nanofibers by conferring innate cellular recognition, immune evasion, and targeted signaling capabilities. This review aims to provide a comprehensive summary of the recent advancements in the fabrication, characterization, and modification of cell membrane-coated nanofibers for tissue repair. The review commences with an examination of diverse methodologies employed for nanofiber fabrication, encompassing electrospinning, melt electrospinning, and self-assembly techniques. This is followed by an overview of advanced cell membrane extraction methodologies and strategies for stable membrane integration with nanofibers. Subsequently, the review highlights state-of-the-art characterization techniques used to evaluate the physical, chemical, and biological properties of these composite scaffolds. Finally, we address the potential applications of these bioinspired nanofibers in bone regeneration, vascular repair, skin wound healing, and cancer therapy, and provide insights into future perspectives and challenges for clinical translation. Our analysis indicates that cell membrane-coated nanofibers represent a versatile platform for next-generation tissue engineering and regenerative medicine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d5bm00290g | DOI Listing |
Sci Prog
September 2025
Shenzhen University Sixth Affiliated Hospital, Shenzhen Nanshan People's Hospital, Shenzhen, China.
Colorectal cancer ranks among the most prevalent and lethal malignant tumors globally. Historically, the incidence of colorectal cancer in China has been lower than that in developed European and American countries; however, recent trends indicate a rising incidence due to changes in dietary patterns and lifestyle. Lipids serve critical roles in human physiology, such as energy provision, cell membrane formation, signaling molecule function, and hormone synthesis.
View Article and Find Full Text PDFCell Tissue Res
September 2025
Grupo de Investigaciones Biológicas y Moleculares (GIByM), Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA NEA), Universidad Nacional del Nordeste (UNNE)-CONICET, Corrientes, Argentina.
Angiogenesis, the formation of new blood vessels from pre-existing vasculature, is a crucial process in both physiological and pathological contexts, including cancer. Phospholipases A (PLAs), enzymes found in snake venoms, have attracted attention due to their potential antiangiogenic properties. In this study, we explored the antiangiogenic effects of PLA isoforms isolated from Bothrops diporus venom using a combination of in vivo and ex vivo models.
View Article and Find Full Text PDFPlant Cell Rep
September 2025
Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou, 225009, China.
Plasma membrane Gγ protein MGG4, the candidate for maize yield QTL, positively regulates seed size mainly through affecting kernel width.
View Article and Find Full Text PDFMol Biol Rep
September 2025
School of Pharmacy, Heilongjiang University of Chinese Medicine, NO 24 Heping Road, 150040, Harbin, P. R. China.
Lysosome-dependent cell death (LDCD) is a regulated form of cell death initiated by increased lysosomal membrane permeability, leading to the cytoplasmic release of lysosomal enzymes and subsequent cellular damage. Molecular mechanisms controlling LDCD include lysosomal membrane instability and lysosomal enzyme release, which together lead to cell damage. A more profound comprehension of these underlying mechanisms may reveal new therapeutic targets for diseases associated with lysosomal dysfunction.
View Article and Find Full Text PDFFunct Integr Genomics
September 2025
Department of Plastic Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China.
Keloid scarring and Metabolic Syndrome (MS) are distinct conditions marked by chronic inflammation and tissue dysregulation, suggesting shared pathogenic mechanisms. Identifying common regulatory genes could unveil novel therapeutic targets. Methods.
View Article and Find Full Text PDF