98%
921
2 minutes
20
With the material system operating at lower temperatures, protonic ceramic electrochemical cells (PCECs) can offer high energy efficiency and reliable performance for both power generation and hydrogen production, making them a promising technology for reversible energy cycling. However, PCEC faces technical challenges, particularly regarding electrode activity and durability under high current density operations. To address these challenges, we introduce a nano-architecture oxygen electrode characterized by high porosity and triple conductivity, designed to enhance catalytic activity and interfacial stability through a self-assembly approach, while maintaining scalability. Electrochemical cells incorporating this advanced electrode demonstrate robust performance, achieving a peak power density of 1.50 W cm⁻ at 600 °C in fuel cell mode and a current density of 5.04 A cm at 1.60 V in electrolysis mode, with enhanced stability on transient operations and thermal cycles. The underlying mechanisms are closely related to the improved surface activity and mass transfer due to the dual features of the electrode structure. Additionally, the enhanced interfacial bonding between the oxygen electrode and electrolyte contributes to increased durability and thermomechanical integrity. This study underscores the critical importance of optimizing electrode microstructure to achieve a balance between surface activity and durability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12049472 | PMC |
http://dx.doi.org/10.1038/s41467-025-59477-9 | DOI Listing |
J Am Chem Soc
September 2025
National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
Zeolite-confined Rh-based catalysts have emerged as promising heterogeneous candidates for olefin hydroformylation. However, they face challenges of reactant- and product-induced Rh leaching and aggregation. Herein, zeolite framework-anchored Rh-(O-Zn) sites were designed and are shown to have remarkable activity and stability for gas-phase ethylene hydroformylation.
View Article and Find Full Text PDFJ Phys Chem B
September 2025
National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 11221, Taiwan, ROC.
The synthesis of -tetrakis(3,4,5-trimethoxyphenyl)porphyrin [HT(3,4,5-OCH)PP] and cobalt(II) -tetrakis(3,4,5-trimethoxyphenyl)porphyrin [Co(T(3,4,5-OCH)PP)] has been successfully accomplished. The oxidation properties of [Co(T(3,4,5-OCH)PP)] have been assessed through UV-vis, NMR, and EPR techniques. It can be seen in the UV-vis spectrum that adding SbCl caused extra peaks to appear at 674 nm, which means that a π-cation radical was formed.
View Article and Find Full Text PDFEnviron Technol
September 2025
College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, People's Republic of China.
The soil in reclaimed shale gas sites is compacted and suffers from issues like poor drainage, drought conditions, and nutrient deficiency, posing challenges for agricultural production. In this study, rare earth tailings were incorporated into biochar at different mass ratios (rare earth tailings: biochar = 1:1, 1:2, 1:3, 1:4). Subsequently, a series of rare earth tailings-doped biochar materials (REE-BC) were prepared by calcination at 700°C.
View Article and Find Full Text PDFAn Acad Bras Cienc
September 2025
Federal University of Minas Gerais, Department of Sanitary and Environmental Engineering, 6627, Antônio Carlos Avenue, Campus Pampulha, 31270-010 Belo Horizonte, MG, Brazil.
Micro- and nanoplastics (MNPs) are emerging contaminants increasingly recognized for their environmental and health implications. While surface water systems have been extensively studied, the presence, behavior, and impacts of MNPs in groundwater remain underexplored, despite its critical role as water source worldwide. The findings in this review highlight that agricultural activities, particularly plastic mulches, pesticides containers, fertilizer bags, greenhouses, are major sources of MNP.
View Article and Find Full Text PDFMol Biol Evol
September 2025
Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, Washington, USA.
Human parainfluenza virus 2 (HPIV-2) and human parainfluenza virus 4 (HPIV-4) are significant but underappreciated respiratory pathogens, particularly among high-risk populations including children, the elderly, and immunocompromised individuals. In this study, we sequenced 101 HPIV-2 and HPIV-4 genomes from respiratory samples collected in western Washington State and performed comprehensive evolutionary analyses using both new and publicly available sequences. Phylogenetic and phylodynamic analyses revealed that both HPIV-2 and HPIV-4 evolve at significantly faster rates compared to mumps virus, a reference human orthorubulavirus.
View Article and Find Full Text PDF