Omnidirectionally Stretchable High-Performance Microbatteries Based on Nanocomposite Current Collectors.

Nano Lett

College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210021, China.

Published: May 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Stretchable electronics are transforming next-generation wearables and robotics, creating a significant demand for compatible energy storage devices. Microbatteries, known for their compact and flat design, hold great promise but often face limitations of low strain tolerance and unidirectional stretchability. Here, we introduce omnidirectionally stretchable Zn-MnO microbatteries featuring innovative nanocomposite current collectors. These current collectors comprise serpentine-patterned silver nanowire and carbon nanotube nanocomposites embedded in a soft elastomer, which effectively dissipate strain across all directions. The resulting microbattery achieves impressive performance, including a high capacity (>1.5 mAh cm), excellent rate capability (up to 5.0 mA cm), and robust operation under omnidirectional/biaxial strains. Additionally, multiple microbattery cells are successfully integrated with a wireless charging circuit and a soft LED array, forming a wearable system that seamlessly conforms to body movements. This work establishes a novel design framework for deformable energy storage devices, merging superior electrochemical performance with multidirectional stretchability.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.5c01155DOI Listing

Publication Analysis

Top Keywords

current collectors
12
omnidirectionally stretchable
8
nanocomposite current
8
energy storage
8
storage devices
8
stretchable high-performance
4
high-performance microbatteries
4
microbatteries based
4
based nanocomposite
4
collectors stretchable
4

Similar Publications

All-solid-state batteries (ASSBs), equipped with highly ion-conductive sulfide solid electrolytes and utilizing lithium plating/stripping as anode electrochemistry, suffer from 1) chemical vulnerability of the electrolytes with lithium and 2) physical growth of lithium to penetrate the electrolytes. By employing an ordered mesoporous graphitic carbon (OMGC) framework between a sulfide electrolyte layer and a copper current collector in ASSB, the concerns by are addressed 1) minimizing the chemically vulnerable interface (CVI) between electric conductor and solid electrolyte, and 2) allowing lithium ingrowth toward the porous structure via Coble creep, a diffusional deformation mechanism of lithium metal along the lithium-carbon interface. The void volume of the framework is fully filled with lithium metal, despite ionic pathways not being provided separately, even without additional lithiophiles, when an enough amount of lithium is allowed to be plated.

View Article and Find Full Text PDF

Influence of the Metal Support─Catalyst Contact on the Performance of NiO-Based O Evolution Electrocatalysts.

ACS Appl Mater Interfaces

September 2025

Surface Science Laboratory, Department of Materials and Geosciences, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287 Darmstadt, Germany.

The performance of NiO-based electrocatalysts for the oxygen evolution reaction (OER) is strongly influenced by the interface between the metal support (current collector) and the catalyst layer, which modulates electronic properties and electrochemical activity. This study systematically investigates the solid-solid interface behavior of NiO thin films prepared by reactive magnetron sputtering on Pt, Au, and Ni, followed by electrochemical characterization. Stepwise NiO deposition and X-ray photoelectron spectroscopy reveal distinct band alignment and electronic structure differences at the metal-catalyst interface.

View Article and Find Full Text PDF

Ultrathin amorphous materials are promising counterparts to 2D crystalline materials, yet their properties and functionalities remain poorly understood. Amorphous boron nitride (aBN) has attracted attention for its ultralow dielectric constant and superior manufacturability compared with hexagonal boron nitride. Here, we demonstrate wafer-scale growth of ultrathin aBN films with exceptional thickness and composition uniformity using capacitively coupled plasma-chemical vapor deposition (CCP-CVD) at 400 °C.

View Article and Find Full Text PDF

Anode-free sulfide-based all-solid-state lithium metal batteries (ASSLMBs), which eliminate the need for a lithium metal anode during fabrication, offer superior energy density, enhanced safety, and simplified manufacturing. Their performance is largely influenced by the interfacial properties of the current collectors. Although previous studies have investigated the degradation of sulfide electrolytes on commonly used copper (Cu) and stainless steel (SS) current collectors, the impact of spontaneously formed surface oxides, such as copper oxide (CuO/CuO) and chromium oxide (CrO), on interfacial stability remains underexplored.

View Article and Find Full Text PDF

Understanding the electrochemical extraction and deposition of lithium (Li) from cathode is crucial for advancing anode-free solid-state batteries (AFSSBs). Herein, cryo-transmission electron microscopy (cryo-TEM) and electrochemical studies are employed to investigate how current collector surface properties, current densities, and cathode loadings influence the morphology of fresh electrochemically deposited Li and the electrochemical performance in sulfide-based AFSSBs. Cryo-TEM reveals that Cu current collectors induce irregular, dendritic Li deposits due to their lithiophobic nature and reactivity with LiPSCl (LPSC), while Ni and Au facilitate more uniform, planar-like Li growth.

View Article and Find Full Text PDF