98%
921
2 minutes
20
Two-dimensional (2D) van der Waals (vdW) heterostructures have emerged as a groundbreaking candidate for future integrated circuits due to their tunable band structures, atomically sharp interfaces and seamless compatibility with complementary metal-oxide-semiconductor technologies. Despite their promise, existing synthesis methods, such as mechanical transfer and vapor-phase conversion, struggle to achieve the high-quality, scalable production for practical applications. In response to these longstanding challenges, our study unveils for the first time the direct epitaxial growth of wafer-scale 2D vdW heterostructures (MoS[Formula: see text]/SnS[Formula: see text]) with exceptional quality and uniformity. This achievement is made possible through fundamentally enhancing the adsorption interactions between intermediates and the underlying material. The heterostructures display pristine, defect-free interfaces, consistent crystal orientation and wafer-level thickness uniformity. The Raman peak shifts of MoS[Formula: see text] and SnS[Formula: see text] are constrained to below 0.5 cm[Formula: see text] across the entire wafer, with intensity deviations maintained within an impressive 2%, and thickness uniformity surpassing 99.5%. Owing to their exceptional crystallinity and interface quality, the heterostructures demonstrate extraordinary electron and hole transfer capabilities, showcasing a prominent rectification effect and an astounding responsivity of [Formula: see text] A/W, averaged from 30 devices. Our study signifies a pivotal advancement for the integration of 2D materials into semiconductor technologies, paving the way for next-generation integrated circuits.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12042757 | PMC |
http://dx.doi.org/10.1093/nsr/nwaf119 | DOI Listing |
Catheter Cardiovasc Interv
October 2024
Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands.
Magn Reson Med
July 2023
Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands.
Eur J Cardiothorac Surg
August 2022
Department of Surgery, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, Netherlands.
Objectives: A minimally invasive lobectomy (MIL) is the standard treatment for stage I non-small cell lung cancer (NSCLC) in medically operable patients. Stereotactic ablative radiotherapy (SABR) is recommended for inoperable patients and has been proposed as a potential alternative for operable patients as well. Here, we present the results of a feasibility study in preparation for a nationwide retrospective cohort study, comparing outcomes between both treatment modalities.
View Article and Find Full Text PDFClin Exp Allergy
August 2021
Department of Dermatology/Allergology, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands.
Br J Anaesth
June 2021
Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, University Hospitals of Geneva, Geneva, Switzerland; University of Geneva, Geneva, Switzerland.
Background: Neonates and infants requiring anaesthesia are at risk of physiological instability and complications, but triggers for peri-anaesthetic interventions and associations with subsequent outcome are unknown.
Methods: This prospective, observational study recruited patients up to 60 weeks' postmenstrual age undergoing anaesthesia for surgical or diagnostic procedures from 165 centres in 31 European countries between March 2016 and January 2017. The primary aim was to identify thresholds of pre-determined physiological variables that triggered a medical intervention.