98%
921
2 minutes
20
This study aims to investigate the feasibility of a single general model to synthesize CT images across body sites, thorax, abdomen, and pelvis, to support treatment planning for MRI-only radiotherapy. A total of 157 patients who received MRI-guided radiation therapy in the thorax, abdomen, and pelvis on a 0.35T MRIdian Linac were included. A subset of 122 cases were used for model training and the remaining 35 cases were used for model validation. All patient datasets had semi-paired CT-simulation image and 0.35T MR image acquired using TrueFISP. A conditional generative adversarial network with a multi-planar method was used to generate synthetic CT images from 0.35T MR images. The effect of preprocessing methods (with and without bias field corrections) on the quality of synthetic CT was evaluated and found to be insignificant. The general models trained on all cases performed comparably to the site-specific models trained on individual body sites. For all models, the peak signal-to-noise ratios ranged from 31.7 to 34.9 and the structural index similarity measures ranged from 0.9547 to 0.9758. For the datasets with bias field corrections, the mean-absolute-errors in HU (general model versus site-specific model) were 49.7 ± 9.4 versus 49.5 ± 8.9, 48.7 ± 7.6 versus 43 ± 7.8 and 32.8 ± 5.5 versus 31.8 ± 5.3 for the thorax, abdomen, and pelvis, respectively. When comparing plans between synthetic CTs and ground truth CTs, the dosimetric difference was on average less than 0.5% (0.2 Gy) for target coverage and less than 2.1% (0.4 Gy) for organ-at-risk metrics for all body sites with either the general or specific models. Synthetic CT plans showed good agreement with mean gamma pass rates of >94% and >99% for 1%/1 mm and 2%/2 mm, respectively. This study has demonstrated the feasibility of using a general model for multiple body sites and the potential of using synthetic CT to support an MRI-guided radiotherapy workflow.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/2057-1976/add26b | DOI Listing |
Knee Surg Relat Res
September 2025
Florida Orthopaedic Institute, Gainesville, FL, 32607, USA.
Background: A clear understanding of minimal clinically important difference (MCID) and substantial clinical benefit (SCB) is essential for effectively implementing patient-reported outcome measurements (PROMs) as a performance measure for total knee arthroplasty (TKA). Since not achieving MCID and SCB may reflect suboptimal surgical benefit, the primary aim of this study was to use machine learning to predict patients who may not achieve the threshold-based outcomes (i.e.
View Article and Find Full Text PDFBMC Nurs
September 2025
Institute of Business Administration and Business Informatics, IT for the Caring Society, University of Hildesheim, Hildesheim, Germany.
Background: As populations age, informal caregivers play an increasingly vital role in long-term care, with 80% of care provided by family members in Europe. However, many individuals do not immediately recognize themselves as caregivers, especially in the early stages. This lack of awareness can increase physical and emotional stress and delay access to support services.
View Article and Find Full Text PDFBr J Pharmacol
September 2025
Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
Background And Purpose: Neuroinflammation is increasingly recognised to contribute to drug-resistant epilepsy. Activation of ATP-gated P2X7 receptors has emerged as an important upstream mechanism, and increased P2X7 receptor expression is present in the seizure focus in rodent models and patients. Pharmacological antagonists of P2X7 receptors attenuate seizures in rodents, but this has not been explored in human neural networks.
View Article and Find Full Text PDFJ Assist Reprod Genet
September 2025
Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA.
Purpose: To determine if melatonin-enriched culture media could offset loss of imprinting in mouse concepti.
Methods: Zygotes were cultured to blastocyst stage under optimized conditions in melatonin-supplemented media at either 10 M (MT 10) or 10 M (MT 10), or without supplementation (Culture + embryo transfer, or ET, positive control). Blastocysts were also developed in vivo (ET negative control).