Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Metabolic dysfunction-associated steatotic liver disease (MASLD) constitutes a global health threat with its ability to develop into liver cirrhosis and hepatocellular carcinoma (HCC). Emerging data suggests that oxidative stress and regulated cell death are major driving forces for liver inflammation in MASH. Febuxostat (Feb.), one of the Xanthine oxidase (XO) inhibitors, has shown promise in significantly improving the prognosis of MASH by reducing inflammatory cytokines and cell death. However, the underlying molecular mechanisms remain unclear. In this study, we evaluated the therapeutic effects of febuxostat on MASH through the modulation of cell death, inflammation, and intestinal permeability, focusing on hepatic mRNAs (HGS, SNF8, TSG101) and their epigenetic regulators (rno-miR-6216, rno-miR-1224). MASH was induced in Wistar rats via a High-sucrose high-fat (HSHF) diet over 14 weeks, followed by febuxostat treatment at doses of 1.5, 3, and 6 mg/kg/day for 4 weeks. Febuxostat treatment significantly improved liver function and lipid profiles, reduced hepatic steatosis, intralobular inflammation, and ballooning, and restored normal expression of the hepatic RNA panel by downregulating HGS, SNF8, and TSG101 mRNAs and their epigenetic regulators. Furthermore, febuxostat decreased serum levels of inflammatory (IL6), fibrosis (TGFB1), and cell death (TSG101) markers while reducing apoptosis and regulated cell death via modulation of Caspase-3 and LC3B expression. Improvements in intestinal permeability were evident via reductions in serum haptoglobin (Hpt) and TMAO and restoration of occludin expression. These findings highlight febuxostat as a promising therapeutic candidate for MASH by targeting key molecular mechanisms of liver inflammation and gut-liver axis dysfunction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2025.118086DOI Listing

Publication Analysis

Top Keywords

cell death
24
metabolic dysfunction-associated
8
regulated cell
8
liver inflammation
8
molecular mechanisms
8
intestinal permeability
8
hgs snf8
8
snf8 tsg101
8
epigenetic regulators
8
weeks febuxostat
8

Similar Publications

Viscosity-sensitive fluorescent probes based on the hemicyanine for the organelle-specific visualization during autophagy and ferroptosis.

Spectrochim Acta A Mol Biomol Spectrosc

September 2025

College of Chemistry, Chemical Engineering and Material Science, Soochow University, No. 199 Ren'Ai Road, Suzhou 215123, China; Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China. Electronic address: g

The dynamic monitoring of cell death processes remains a significant challenge due to the scarcity of highly sensitive molecular tools. In this study, two hemicyanine-based probes (5a-5b) with D-π-A structures were developed for organelle-specific viscosity monitoring. Both probes exhibited correlation with the Förster-Hoffmann viscosity-dependent relationship (R > 0.

View Article and Find Full Text PDF

Background: The expression and clinical correlation of BRAFV600E mutation and programmed cell death-1 ligand 1 (PD-L1) in children with Langerhans cell histiocytosis (LCH) have been reported, but the conclusions of previous studies are inconsistent. In addition, it has been reported that elevated cathepsin S (CTSS) expression is associated with various cancers. However, there is currently no research on the correlation between CTSS and LCH.

View Article and Find Full Text PDF

20(R)-ginsenoside Rg3 Inhibits Neuroinflammation Induced by Cerebral Ischemia/Reperfusion Injury by Regulating the Toll-Like Receptor 4/Myeloid Differentiation Factor-88/Nuclear Factor Kappa B Signaling Pathway.

Chem Biodivers

September 2025

School of Pharmaceutical Science, Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, P. R. China.

20(R)-ginsenoside Rg3 can reduce the effects of oxidative stress and cell death in cerebral ischemia‒reperfusion injury (CIRI). Neuroinflammation is crucial post-CIRI, but how 20(R)-Rg3 affects ischemia‒reperfusion-induced neuroinflammation is unclear. To study 20(R)-Rg3's effects on neuroinflammation and neuronal preservation in stroke models and explore toll-like receptor 4/myeloid differentiation factor-88/nuclear factor kappa B (TLR4/MyD88/NF-κB) pathway mechanisms.

View Article and Find Full Text PDF

Immune Response Subphenotyping to Predict Mortality in Sepsis: A Prospective Study in Resource-Limited Setting.

Crit Care Explor

September 2025

Division of Tropical Medicine and Infectious Diseases, Department of Internal Medicine, Dr. Cipto Mangunkusumo National General Hospital, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia.

Importance: Sepsis remains a leading cause of death in infectious cases. The heterogeneity of immune responses is a major challenge in the management and prognostication of patients with sepsis. Identifying distinct immune response subphenotypes using parsimonious classifiers may improve outcome prediction, particularly in resource-limited settings.

View Article and Find Full Text PDF

Problem: Endometriosis is a chronic inflammatory disease that leads to pelvic pain and infertility. Recent studies have indicated that immunological, endocrine, biochemical, and genetic irregularities, along with suboptimal quality of oocytes, embryos, and the endometrial environment, significantly impact infertility associated with endometriosis. Ectopic endometrial cells in endometriosis have the capacity to avoid apoptosis.

View Article and Find Full Text PDF