Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: -mutated women are recommended to undergo bilateral risk-reducing salpingo-oophorectomy (RRSO) after childbearing, due to the lack of effective methods that could be able to early detect the occurrence of ovarian cancer. Thus, predictive machine learning (ML) techniques could be crucial to aid clinicians in identifying high-risk -mutated patients and determining the appropriate timing for performing RRSO.

Methods: In this work, we addressed this task by developing explainable ML models using clinical data referred to a multicentric cohort of 694 -mutated patients from six Italian centers (Policlinico Gemelli, IRCCS San Gerardo, Policlinico Bari, Istituto Tumori Regina Elena, Istituto Tumori Giovanni Paolo II, Ospedale F. Miulli), who performed salpingo-oophorectomy, out of which 39 patients showed tumor (5.6%). Data from Istituto Tumori Regina Elena and Policlinico Bari were used as External Validation Cohort (EVC). The other data were employed as Investigational Cohort (IC). Resampling and ensemble techniques were implemented to handle dataset imbalance. Explainable techniques enabled us to identify some protective and risk factors predicted by the models with respect to the task under study.

Results: The best ML model achieved an AUC value of 79.3% (95% CI: 75.3% - 83.0%), an accuracy value of 73.8% (95% CI: 69.6% - 78.2%), a sensitivity value of 66.7% (95% CI: 58.1% - 75.3%), a specificity value of 74.3% (95% CI: 68.7% - 80.0%), and a G-mean value of 70.4% (95% CI: 63.0% - 76.0%) on EVC. Although the model demonstrated good overall performance, its limited sensitivity reduces its effectiveness in this high-risk population. The variables CA125, age and MatoRRSO were found to be the most significant risk factors, in agreement with the clinical perspective. Conversely, variables such as Estroprogestinuse and PregnancyNfdt played a protective factor role.

Conclusion: Our ML proposal explores the intricate relationships between multiple clinical variables, with a particular emphasis on understanding their non-linear associations. However, while our approach provides valuable insights into risk assessment for BRCA-mutated patients, its current predictive capacity does not significantly improve upon existing clinical models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12037974PMC
http://dx.doi.org/10.3389/fonc.2025.1574037DOI Listing

Publication Analysis

Top Keywords

-mutated patients
12
istituto tumori
12
ovarian cancer
8
risk-reducing salpingo-oophorectomy
8
policlinico bari
8
tumori regina
8
regina elena
8
risk factors
8
patients
5
95%
5

Similar Publications

Retinitis pigmentosa (RP) affects around 1 in 4000 individuals and represents approximately 25% of cases of vision loss in adults, through death of retinal rod and cone photoreceptor cells. It remains a largely untreatable disease, and research is needed to identify potential targets for therapy. Mutations in 94 different genes have been identified as causing RP, including AGBL5 which encodes the main deglutamylase that regulates and maintains functional levels of cilia tubulin glutamylation, which is essential to initiate ciliogenesis, maintain cilia stability and motility.

View Article and Find Full Text PDF

CETN3 deficiency induces microcephaly by disrupting neural stem/progenitor cell fate through impaired centrosome assembly and RNA splicing.

EMBO Mol Med

September 2025

Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, National Stem Cell Translational Resource Center & Ministry of Education Stem Cell Resource Center, Frontier Science Center for Stem Cell Research, School of Li

Primary microcephaly, a rare congenital condition characterized by reduced brain size, occurs due to impaired neurogenesis during brain development. Through whole-exome sequencing, we identified compound heterozygous loss-of-function mutations in CENTRIN 3 (CETN3) in a 5-year-old patient with primary microcephaly. As CETN3 has not been previously linked to microcephaly, we investigated its potential function in neurodevelopment in human pluripotent stem cell-derived cerebral organoids.

View Article and Find Full Text PDF

Characterization of the extrinsic and intrinsic signatures and therapeutic vulnerability of small cell lung cancers.

Signal Transduct Target Ther

September 2025

State Key Laboratory of Molecular Oncology & Department of Medical Oncology & Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

Small-cell lung cancer (SCLC), an aggressive neuroendocrine tumor strongly associated with exposure to tobacco carcinogens, is characterized by early dissemination and dismal prognosis with a five-year overall survival of less than 7%. High-frequency gain-of-function mutations in oncogenes are rarely reported, and intratumor heterogeneity (ITH) remains to be determined in SCLC. Here, via multiomics analyses of 314 SCLCs, we found that the ASCL1/MKI67 and ASCL1/CRIP2 clusters accounted for 74.

View Article and Find Full Text PDF

[Research status and future direction of irreversible EGFR-TKI in non-small cell lung cancer].

Zhonghua Jie He He Hu Xi Za Zhi

September 2025

Department of nursing, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China.

Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKI) are important treatments for EGFR mutant non-small cell lung cancer (NSCLC). However, the first and second generation EGFR-TKI face clinical limitations due to acquired resistance, such as the T790M mutation. Irreversible EGFR-TKI can significantly prolong the survival of patients by enhancing the inhibition of drug-resistant mutations through the covalent binding mechanism.

View Article and Find Full Text PDF

Cortical versus hippocampal network dysfunction in a human brain assembloid model of epilepsy and intellectual disability.

Cell Rep

September 2025

Department of Neurology, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA 90095, USA; Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Un

Neurodevelopmental disorders often impair multiple cognitive domains. For instance, a genetic epilepsy syndrome might cause seizures due to cortical hyperexcitability and present with memory impairments arising from hippocampal dysfunction. This study examines how a single disorder differentially affects distinct brain regions using induced pluripotent stem cell (iPSC)-derived cortical- and hippocampal-ganglionic eminence assembloids to model developmental and epileptic encephalopathy 13, a condition arising from gain-of-function mutations in the SCN8A gene encoding the sodium channel Nav1.

View Article and Find Full Text PDF