Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background: Whereas intestinal epithelial barrier dysfunction is implicated in inflammatory bowel disease (IBD), the underlying mechanisms remain elusive. Tumor necrosis factor α stimulated gene 6 (TSG-6) is a secretory protein with anti-inflammatory properties. Our previous research demonstrated TSG-6 can relieve intestinal inflammation and mucosal damage. However, the underlying mechanism and targets remain unclear. This research sought to explore how TSG-6 regulates the intestinal epithelial barrier and its mechanistic role in experimental colitis.
Methods: IBD mouse model was generated using dextran sodium sulfate (DSS), with or without intraperitoneal injection of TSG-6(100 µg/kg or 200 µg/kg). The effects of TSG-6 on colonic inflammation and intestinal barrier function were investigated. Label-free quantitative proteomic analysis was performed on intestinal samples to explore the mechanism and therapeutic target of TSG-6. Molecular interactions were determined by co-immunoprecipitation (Co-IP) and immunofluorescence colocalization.
Results: TSG-6 treatment significantly attenuated DSS-induced colitis symptoms and inflammatory cell infiltration. Microarray analysis revealed that TSG-6 decreased pro-inflammatory cytokine levels in colon tissue. TSG-6 restored the intestinal epithelial barrier through the promotion of intestinal epithelial cells (IECs) proliferation and mitigation of tight junctions (TJs) damage. Mechanistically, TSG-6 promoted tuft cells differentiation and increased interleukin-25 (IL-25) levels by directly binding to Pou class 2 homeobox 3(Pou2f3) and up-regulating its expression in the gut.
Conclusions: This study demonstrated TSG-6 as a positive regulator of tuft cells differentiation by interacting with Pou2f3, and the effectiveness of exogenous TSG-6 treatment on maintaining intestinal barrier integrity showed a promising potential for its clinical application.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12042439 | PMC |
http://dx.doi.org/10.1186/s10020-025-01230-5 | DOI Listing |