Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The accessibility of medical services in Mainland China had been on the rise, leading to a surge in the number of Magnetic Resonance Imaging (MRI) scans. This increase had caused substantial delays in MRI examination queues at large hospitals. With MRI equipment and exams being costly, over-purchasing machines could lead to underutilization of resources. It was, therefore, crucial to devise a comprehensive method that could shorten patient wait times and optimize the use of medical resources within hospitals. The research had utilized daily MRI examination application data from a hospital covering the period from July 1, 2017, to November 30, 2022. The Autoregressive Integrated Moving Average (ARIMA) model and the AutoRegressive Integrated Moving Average with exogenous (ARIMAX) model were developed using SAS (version 9.3) software. Moreover, Non-AutoRegressive (NAR) and Non-AutoRegressive with exogenous (NARX) models were built using MATLAB (version R2015b) to forecast future MRI examination demands. Integrating the ARIMAX model with the NARX model, an ARIMAX-NARX model had been constructed.The predictive accuracy of these models was then assessed and compared. Based on the prediction outcomes, an Integer Linear Programming model was employed to calculate the optimal number of MRI examinations per machine per day, targeting cost reduction. An optimization flowchart for MRI examination resource allocation was developed by integrating critical process components, thus streamlining and systematizing the optimization process to improve efficiency. Analysis of the data revealed a weekly cyclical trend in MRI examination applications. Among the ARIMA, ARIMAX, NAR, NARX, ARIMAX-NARX models evaluated for their predictive skills, the NARX model emerged as the most accurate for forecasting. An Integer Linear Programming (ILP) model was utilized to plan the number of examinations for each MRI machine, effectively reducing costs. An optimization flowchart was developed to integrate key factors in MRI examination resource allocation, streamlining and systematizing the optimization process to enhance work efficiency. This study offers a comprehensive protocol for optimizing MRI examination resource allocation, combining the predictive power of the NARX model, the planning capabilities of the Integer Linear Programming model, and the integration of other relevant factors via an optimization flowchart.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12041548PMC
http://dx.doi.org/10.1038/s41598-025-98817-zDOI Listing

Publication Analysis

Top Keywords

mri examination
32
examination resource
16
resource allocation
16
linear programming
16
mri
12
narx model
12
integer linear
12
optimization flowchart
12
model
10
examination
8

Similar Publications

Importance: Multiparametric magnetic resonance imaging (MRI), with or without prostate biopsy, has become the standard of care for diagnosing clinically significant prostate cancer. Resource capacity limits widespread adoption. Biparametric MRI, which omits the gadolinium contrast sequence, is a shorter and cheaper alternative offering time-saving capacity gains for health systems globally.

View Article and Find Full Text PDF

Objective: To investigate the characteristics of brain structures in patients with noise-induced hearing loss (NIHL) using source-based morphometry (SBM) and to evaluate the correlation between abnormal brain regions and clinical data.

Methods: High-resolution 3D T1 structural images were acquired from 81 patients with NIHL and 74 age- and education level-matched healthy controls (HCs). The clinical data of all subjects were collected, including noise exposure time, monaural hearing threshold weighted values (MTWVs), Mini-Mental State Examination (MMSE), and Hamilton Anxiety Scale (HAMA) scores.

View Article and Find Full Text PDF

Mid-field (0.55-T) MRI may offer an alternative to higher field strengths for pancreatic intraductal papillary mucinous neoplasms (IPMNs) surveillance given high-quality MRCP sequences enabled by longer T2 relaxation times and greater patient comfort resulting from a larger bore and reduced acoustic noise. However, SNR is lower at 0.

View Article and Find Full Text PDF

Correction: Nanoparticles modified by triple single chain antibodies for MRI examination and targeted therapy in pancreatic cancer.

Nanoscale

September 2025

Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.

Correction for 'Nanoparticles modified by triple single chain antibodies for MRI examination and targeted therapy in pancreatic cancer' by Jinmao Zou , , 2020, , 4473-4490, https://doi.org/10.1039/C9NR04976B.

View Article and Find Full Text PDF

Background: Thrombotic thrombocytopenic purpura (TTP) is a life-threatening hematologic emergency caused by ADAMTS13 deficiency, leading to microvascular thrombosis, haemolytic anaemia, thrombocytopenia, and end-organ damage. Neurological symptoms occur in up to 90% of cases and are frequently misdiagnosed as stroke. Prompt recognition and treatment reduce the mortality rate from over 90% to 10-20%.

View Article and Find Full Text PDF