98%
921
2 minutes
20
AI is emerging as a promising tool for diagnosing COVID-19 based on chest CT scans. The aim of this study was the comparison of AI models for COVID-19 diagnosis. Therefore, we: (1) trained three distinct AI models for classifying COVID-19 and non-COVID-19 pneumonia (nCP) using a large, clinically relevant CT dataset, (2) evaluated the models' performance using an independent test set, and (3) compared the models both algorithmically and experimentally.In this multicenter multi-vendor study, we collected n=1591 chest CT scans of COVID-19 (n=762) and nCP (n=829) patients from China and Germany. In Germany, the data was collected from three RACOON sites. We trained and validated three COVID-19 AI models with different architectures: COVNet based on 2D-CNN, DeCoVnet based on 3D-CNN, and AD3D-MIL based on 3D-CNN with attention module. 991 CT scans were used for training the AI models using 5-fold cross-validation. 600 CT scans from 6 different centers were used for independent testing. The models' performance was evaluated using accuracy (Acc), sensitivity (Se), and specificity (Sp).The average validation accuracy of the COVNet, DeCoVnet, and AD3D-MIL models over the 5 folds was 80.9%, 82.0%, and 84.3%, respectively. On the independent test set with n=600 CT scans, COVNet yielded Acc=76.6%, Se=67.8%, Sp=85.7%; DeCoVnet provided Acc=75.1%, Se=61.2%, Sp=89.7%; and AD3D-MIL achieved Acc=73.9%, Se=57.7%, Sp=90.8%.The classification performance of the evaluated AI models is highly dependent on the training data rather than the architecture itself. Our results demonstrate a high specificity and moderate sensitivity. The AI classification models should not be used unsupervised but could potentially assist radiologists in COVID-19 and nCP identification. · This study compares AI approaches for diagnosing COVID-19 in chest CT scans, which is essential for further optimizing the delivery of healthcare and for pandemic preparedness.. · Our experiments using a multicenter, multi-vendor, diverse dataset show that the training data is the key factor in determining the diagnostic performance.. · The AI models should not be used unsupervised but as a tool to assist radiologists.. · Jaiswal A, Fervers P, Meng F et al. Performance of AI Approaches for COVID-19 Diagnosis Using Chest CT Scans: The Impact of Architecture and Dataset. Rofo 2025; DOI 10.1055/a-2577-3928.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1055/a-2577-3928 | DOI Listing |
PLoS One
September 2025
Department of Health Services Research, and CAPHRI School for Public Health and Primary Care, Aging and Long Term Care Maastricht, Maastricht, the Netherlands.
Background: Older patients presenting with nonspecific complaints (NSC) in the Emergency Department (ED) pose diagnostic challenges. The lack of clear symptoms leads to high misdiagnosis rates, extended hospital stays, and functional impairment. However, limited research exists on diagnostic test utilization for this population.
View Article and Find Full Text PDFCureus
August 2025
Infectious Diseases, Methodist University Hospital, Memphis, USA.
Mycoplasma pneumoniae (MP) is a bacterium commonly known to cause mild respiratory infections, especially in young children. Epstein-Barr virus (EBV) is a herpesvirus that causes infectious mononucleosis, typically a mild illness in younger individuals. However, in its severe form, EBV can cause pneumonia.
View Article and Find Full Text PDFJ Thorac Imaging
September 2025
Department of Radiology, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University.
Purpose: To establish an explainable machine learning (ML) approach using patient-related and noncontrast chest CT-derived features to predict the contrast material arrival time (TARR) in CT pulmonary angiography (CTPA).
Materials And Methods: This retrospective study included consecutive patients referred for CTPA between September 2023 to October 2024. Sixteen clinical and 17 chest CT-derived parameters were used as inputs for the ML approach, which employed recursive feature elimination for feature selection and XGBoost with SHapley Additive exPlanations (SHAP) for explainable modeling.
Front Physiol
August 2025
School of Mechanical Engineering and IEDT, Kyungpook National University, Daegu, Republic of Korea.
Introduction: Quantitative computed tomography (qCT) provides detailed spatial assessments of lung structure and function, while electrical impedance tomography (EIT) offers high temporal resolution for analyzing breathing patterns but lacks structural detail. This study investigates the correlation between qCT-based spatial variables and EIT-based temporal signals to elucidate the physiological relationships between these two modalities.
Methods: Six participants with asthma underwent pulmonary function tests (PFTs) before and after bronchodilator inhalation.
Injury
August 2025
Department of Orthopaedics, Peking University Third Hospital, Beijing, China; Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China. Electronic address:
Objective: This study aimed to comprehensively describe the clinical characteristics of rib fractures in patients with traumatic thoracic vertebral fractures (TVFs), and to develop machine learning (ML) models for predicting the risk of rib fractures.
Methods: We retrospectively reviewed patients diagnosed with TVFs at a single hospital between January 2007 and November 2024, enrolling 1420 patients and 20 variables. Chest CT scans were used to confirm the presence of rib fractures and to examine their distribution characteristics.